Nuprl Lemma : not-proj-sep-iff-proj-eq

n:ℕ. ∀a,b:ℙ^n.  a ≠ ⇐⇒ b)


Proof




Definitions occuring in Statement :  proj-eq: b proj-sep: a ≠ b real-proj: ^n nat: all: x:A. B[x] iff: ⇐⇒ Q not: ¬A
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A member: t ∈ T uall: [x:A]. B[x] prop: false: False rev_implies:  Q or: P ∨ Q squash: T exists: x:A. B[x] nat: ge: i ≥  decidable: Dec(P) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) real-proj: ^n rneq: x ≠ y guard: {T} rdiv: (x/y) uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 top: Top req-vec: req-vec(n;x;y) punit: u(a) real-vec-mul: a*X int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b le: A ≤ B real-vec: ^n rev_uimplies: rev_uimplies(P;Q) less_than': less_than'(a;b) true: True rat_term_to_real: rat_term_to_real(f;t) rtermMultiply: left "*" right rat_term_ind: rat_term_ind rtermDivide: num "/" denom rtermVar: rtermVar(var) rtermMinus: rtermMinus(num) pi1: fst(t) pi2: snd(t) rless: x < y sq_exists: x:A [B[x]] nat_plus: +
Lemmas referenced :  proj-sep_wf istype-void proj-eq_wf real-proj_wf istype-nat proj-eq-iff not-proj-sep req-vec_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le real-vec-mul_wf rdiv_wf real-vec-norm_wf proj-norm-positive rless_wf int-to-real_wf rneq_wf rmul_preserves_rneq_iff2 rmul_wf rinv_wf2 itermSubtract_wf itermMultiply_wf rneq_functionality req_transitivity rmul_functionality req_weakening rmul-rinv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma int_seg_wf rmul_preserves_req int_seg_properties intformless_wf int_formula_prop_less_lemma req_functionality rminus_wf itermMinus_wf rminus_functionality real_term_value_minus_lemma rmul_reverses_rless_iff rless-int rless_functionality assert-rat-term-eq2 rtermMinus_wf rtermMultiply_wf rtermVar_wf rtermDivide_wf rabs_wf real-vec-norm-mul real-vec-norm_functionality nat_plus_properties punit_wf rmul-rinv3 rleq_weakening_rless rabs-of-nonpos rabs-of-nonneg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation sqequalRule functionIsType universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination voidElimination because_Cache inhabitedIsType dependent_functionElimination productElimination unionElimination imageMemberEquality baseClosed dependent_pairFormation_alt dependent_set_memberEquality_alt addEquality setElimination rename natural_numberEquality independent_isectElimination approximateComputation lambdaEquality_alt int_eqEquality Error :memTop,  inrFormation_alt isect_memberEquality_alt equalityTransitivity equalitySymmetry closedConclusion imageElimination applyEquality inlFormation_alt minusEquality promote_hyp

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbP{}\^{}n.    (\mneg{}a  \mneq{}  b  \mLeftarrow{}{}\mRightarrow{}  a  =  b)



Date html generated: 2020_05_20-PM-01_16_52
Last ObjectModification: 2019_12_10-AM-00_24_29

Theory : inner!product!spaces


Home Index