Nuprl Lemma : not-proj-sep-iff-proj-eq
∀n:ℕ. ∀a,b:ℙ^n.  (¬a ≠ b 
⇐⇒ a = b)
Proof
Definitions occuring in Statement : 
proj-eq: a = b
, 
proj-sep: a ≠ b
, 
real-proj: ℙ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
real-proj: ℙ^n
, 
rneq: x ≠ y
, 
guard: {T}
, 
rdiv: (x/y)
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
req-vec: req-vec(n;x;y)
, 
punit: u(a)
, 
real-vec-mul: a*X
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
le: A ≤ B
, 
real-vec: ℝ^n
, 
rev_uimplies: rev_uimplies(P;Q)
, 
less_than': less_than'(a;b)
, 
true: True
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermMultiply: left "*" right
, 
rat_term_ind: rat_term_ind, 
rtermDivide: num "/" denom
, 
rtermVar: rtermVar(var)
, 
rtermMinus: rtermMinus(num)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
nat_plus: ℕ+
Lemmas referenced : 
proj-sep_wf, 
istype-void, 
proj-eq_wf, 
real-proj_wf, 
istype-nat, 
proj-eq-iff, 
not-proj-sep, 
req-vec_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
real-vec-mul_wf, 
rdiv_wf, 
real-vec-norm_wf, 
proj-norm-positive, 
rless_wf, 
int-to-real_wf, 
rneq_wf, 
rmul_preserves_rneq_iff2, 
rmul_wf, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
rneq_functionality, 
req_transitivity, 
rmul_functionality, 
req_weakening, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
int_seg_wf, 
rmul_preserves_req, 
int_seg_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
req_functionality, 
rminus_wf, 
itermMinus_wf, 
rminus_functionality, 
real_term_value_minus_lemma, 
rmul_reverses_rless_iff, 
rless-int, 
rless_functionality, 
assert-rat-term-eq2, 
rtermMinus_wf, 
rtermMultiply_wf, 
rtermVar_wf, 
rtermDivide_wf, 
rabs_wf, 
real-vec-norm-mul, 
real-vec-norm_functionality, 
nat_plus_properties, 
punit_wf, 
rmul-rinv3, 
rleq_weakening_rless, 
rabs-of-nonpos, 
rabs-of-nonneg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
sqequalRule, 
functionIsType, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
inhabitedIsType, 
dependent_functionElimination, 
productElimination, 
unionElimination, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
inrFormation_alt, 
isect_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
closedConclusion, 
imageElimination, 
applyEquality, 
inlFormation_alt, 
minusEquality, 
promote_hyp
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbP{}\^{}n.    (\mneg{}a  \mneq{}  b  \mLeftarrow{}{}\mRightarrow{}  a  =  b)
Date html generated:
2020_05_20-PM-01_16_52
Last ObjectModification:
2019_12_10-AM-00_24_29
Theory : inner!product!spaces
Home
Index