Nuprl Lemma : IVT-test
∃x:ℝ [(x^3 = r(2))]
Proof
Definitions occuring in Statement : 
rnexp: x^k1
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
sq_exists: ∃x:A [B[x]]
, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rneq: x ≠ y
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
le: A ≤ B
, 
exp: i^n
, 
primrec: primrec(n;b;c)
, 
subtract: n - m
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
sq_exists: ∃x:A [B[x]]
Lemmas referenced : 
rational-fun-zero_wf, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
ratsub_wf, 
ratexp_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
istype-le, 
nat_plus_wf, 
rsub_wf, 
rnexp_wf, 
int-to-real_wf, 
real_wf, 
i-member_wf, 
rccint_wf, 
ratreal_wf, 
req_functionality, 
rsub_functionality, 
rnexp_functionality, 
req_weakening, 
req_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
rleq-int-fractions, 
istype-false, 
radd_wf, 
rmul_wf, 
rinv_wf2, 
itermSubtract_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermAdd_wf, 
exp_wf2, 
rleq-int, 
rleq_functionality, 
ratreal-req, 
req_transitivity, 
ratreal-ratsub, 
ratreal-ratexp, 
radd_functionality, 
rmul_functionality, 
rinv1, 
rmul-identity1, 
rmul-int, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_add_lemma, 
rnexp-int, 
radd-int, 
member_rccint_lemma, 
subtype_rel_sets_simple, 
rleq_wf, 
req-implies-req
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
independent_pairEquality, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
hypothesis, 
unionElimination, 
isectElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
universeIsType, 
hypothesisEquality, 
applyEquality, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
setIsType, 
independent_pairFormation, 
lambdaFormation_alt, 
because_Cache, 
productElimination, 
closedConclusion, 
inrFormation_alt, 
imageMemberEquality, 
baseClosed, 
minusEquality, 
multiplyEquality, 
addEquality, 
int_eqEquality, 
productEquality
Latex:
\mexists{}x:\mBbbR{}  [(x\^{}3  =  r(2))]
Date html generated:
2019_10_30-AM-10_02_26
Last ObjectModification:
2019_01_11-PM-05_34_56
Theory : reals
Home
Index