Nuprl Lemma : IVT-test

x:ℝ [(x^3 r(2))]


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y int-to-real: r(n) real: sq_exists: x:A [B[x]] natural_number: $n
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] nat_plus: + decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False so_lambda: λ2x.t[x] nat: subtype_rel: A ⊆B so_apply: x[s] and: P ∧ Q cand: c∧ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True le: A ≤ B exp: i^n primrec: primrec(n;b;c) subtract: m rdiv: (x/y) req_int_terms: t1 ≡ t2 sq_exists: x:A [B[x]]
Lemmas referenced :  rational-fun-zero_wf decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than ratsub_wf ratexp_wf decidable__le intformle_wf int_formula_prop_le_lemma istype-le nat_plus_wf rsub_wf rnexp_wf int-to-real_wf real_wf i-member_wf rccint_wf ratreal_wf req_functionality rsub_functionality rnexp_functionality req_weakening req_wf rdiv_wf rless-int rless_wf rleq-int-fractions istype-false radd_wf rmul_wf rinv_wf2 itermSubtract_wf itermVar_wf itermMultiply_wf itermAdd_wf exp_wf2 rleq-int rleq_functionality ratreal-req req_transitivity ratreal-ratsub ratreal-ratexp radd_functionality rmul_functionality rinv1 rmul-identity1 rmul-int req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_add_lemma rnexp-int radd-int member_rccint_lemma subtype_rel_sets_simple rleq_wf req-implies-req
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin independent_pairEquality natural_numberEquality dependent_set_memberEquality_alt hypothesis unionElimination isectElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt voidElimination sqequalRule universeIsType hypothesisEquality applyEquality setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry productIsType setIsType independent_pairFormation lambdaFormation_alt because_Cache productElimination closedConclusion inrFormation_alt imageMemberEquality baseClosed minusEquality multiplyEquality addEquality int_eqEquality productEquality

Latex:
\mexists{}x:\mBbbR{}  [(x\^{}3  =  r(2))]



Date html generated: 2019_10_30-AM-10_02_26
Last ObjectModification: 2019_01_11-PM-05_34_56

Theory : reals


Home Index