Nuprl Lemma : continuous-rpolynomial

n:ℕ. ∀a:ℕ1 ⟶ ℝ. ∀I:Interval.  i≤n. a_i x^i) continuous for x ∈ I


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I interval: Interval rpolynomial: i≤n. a_i x^i) real: int_seg: {i..j-} nat: all: x:A. B[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q prop: so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True subtype_rel: A ⊆B rfun-eq: rfun-eq(I;f;g) r-ap: f(x) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  eq_int: (i =z j) subtract: m rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  interval_wf int_seg_wf real_wf all_wf subtract_wf continuous_wf rpolynomial_wf subtract-add-cancel decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf i-member_wf set_wf less_than_wf primrec-wf2 nat_wf continuous-const false_wf lelt_wf continuous_functionality_wrt_rfun-eq top_wf subtype_rel_dep_function subtype_rel_self eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int radd_wf rmul_wf intformeq_wf int_formula_prop_eq_lemma rnexp_wf rnexp_zero_lemma req_weakening req_functionality rpolynomial_unroll int_seg_subtype itermAdd_wf int_term_value_add_lemma decidable__lt continuous-add continuous-mul continuous-rnexp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid hypothesis functionEquality sqequalHypSubstitution isectElimination natural_numberEquality addEquality rename setElimination hypothesisEquality because_Cache sqequalRule lambdaEquality dependent_set_memberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll functionExtensionality applyEquality setEquality imageMemberEquality baseClosed independent_functionElimination equalityElimination productElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.  \mforall{}I:Interval.    (\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  continuous  for  x  \mmember{}  I



Date html generated: 2017_10_03-AM-10_26_43
Last ObjectModification: 2017_07_28-AM-08_10_44

Theory : reals


Home Index