Nuprl Lemma : continuous-rpolynomial
∀n:ℕ. ∀a:ℕn + 1 ⟶ ℝ. ∀I:Interval.  (Σi≤n. a_i * x^i) continuous for x ∈ I
Proof
Definitions occuring in Statement : 
continuous: f[x] continuous for x ∈ I
, 
interval: Interval
, 
rpolynomial: (Σi≤n. a_i * x^i)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
rfun-eq: rfun-eq(I;f;g)
, 
r-ap: f(x)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
interval_wf, 
int_seg_wf, 
real_wf, 
all_wf, 
subtract_wf, 
continuous_wf, 
rpolynomial_wf, 
subtract-add-cancel, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
i-member_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
nat_wf, 
continuous-const, 
false_wf, 
lelt_wf, 
continuous_functionality_wrt_rfun-eq, 
top_wf, 
subtype_rel_dep_function, 
subtype_rel_self, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
radd_wf, 
rmul_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rnexp_wf, 
rnexp_zero_lemma, 
req_weakening, 
req_functionality, 
rpolynomial_unroll, 
int_seg_subtype, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__lt, 
continuous-add, 
continuous-mul, 
continuous-rnexp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
hypothesis, 
functionEquality, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
addEquality, 
rename, 
setElimination, 
hypothesisEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
functionExtensionality, 
applyEquality, 
setEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
equalityElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.  \mforall{}I:Interval.    (\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  continuous  for  x  \mmember{}  I
Date html generated:
2017_10_03-AM-10_26_43
Last ObjectModification:
2017_07_28-AM-08_10_44
Theory : reals
Home
Index