Nuprl Lemma : rv-T-partially-implies-rv-T'
∀n:ℕ+. ∀a,b,c:ℝ^n.  ((a ≠ c ∨ (¬a ≠ c)) ⇒ rv-T(n;a;b;c) ⇒ rv-T'(n;a;b;c))
Proof
Definitions occuring in Statement : 
rv-T': rv-T'(n;a;b;c), 
rv-T: rv-T(n;a;b;c), 
real-vec-sep: a ≠ b, 
real-vec: ℝ^n, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
rv-T': rv-T'(n;a;b;c), 
or: P ∨ Q, 
rv-T: rv-T(n;a;b;c), 
and: P ∧ Q, 
real-vec-be: real-vec-be(n;a;b;c), 
exists: ∃x:A. B[x], 
member: t ∈ T, 
top: Top, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
prop: ℙ, 
rv-between: a-b-c, 
real-vec-between: a-b-c, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
rsub: x - y, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
guard: {T}, 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
real: ℝ, 
real-vec-mul: a*X, 
real-vec-add: X + Y, 
req-vec: req-vec(n;x;y), 
real-vec: ℝ^n, 
nat_plus: ℕ+
Lemmas referenced : 
member_rccint_lemma, 
not-real-vec-sep-iff-eq, 
nat_plus_subtype_nat, 
rv-between_wf, 
rv-T_wf, 
or_wf, 
real-vec-sep_wf, 
not_wf, 
real-vec_wf, 
nat_plus_wf, 
real-vec-add_wf, 
real-vec-mul_wf, 
rsub_wf, 
int-to-real_wf, 
rv-between_functionality, 
req-vec_weakening, 
real-vec-add_functionality, 
real-vec-mul_functionality, 
req_weakening, 
radd_wf, 
rmul_wf, 
i-member_wf, 
rooint_wf, 
req-vec_wf, 
member_rooint_lemma, 
rless-cases, 
radd-zero-both, 
radd-rminus-both, 
radd_functionality, 
radd-ac, 
radd_comm, 
rleq_functionality, 
uiff_transitivity, 
rmul-zero-both, 
rless_functionality, 
rminus_wf, 
rleq_wf, 
radd-preserves-rleq, 
rmul_preserves_rless, 
rmul_functionality_wrt_rleq2, 
radd_functionality_wrt_rleq, 
rless_functionality_wrt_implies, 
rless_wf, 
rleq_weakening_rless, 
rleq_weakening_equal, 
rless_transitivity2, 
radd-preserves-rless, 
rmul-nonneg-case1, 
equal_wf, 
real_wf, 
rmul_comm, 
real_term_polynomial, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rleq-rmax, 
rmul_preserves_rleq2, 
rmax_wf, 
less_than'_wf, 
itermMultiply_wf, 
real_term_value_mul_lemma, 
rleq_functionality_wrt_implies, 
req_inversion, 
rmul-distrib1, 
req_wf, 
rleq_weakening, 
rmul_functionality, 
rmax_strict_lb, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
productElimination, 
independent_functionElimination, 
hypothesis, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
independent_isectElimination, 
because_Cache, 
natural_numberEquality, 
independent_pairFormation, 
dependent_pairFormation, 
productEquality, 
levelHypothesis, 
addLevel, 
equalitySymmetry, 
equalityTransitivity, 
inlFormation, 
promote_hyp, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberFormation, 
independent_pairEquality, 
setElimination, 
rename, 
minusEquality, 
axiomEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    ((a  \mneq{}  c  \mvee{}  (\mneg{}a  \mneq{}  c))  {}\mRightarrow{}  rv-T(n;a;b;c)  {}\mRightarrow{}  rv-T'(n;a;b;c))
 Date html generated: 
2017_10_03-AM-11_25_42
 Last ObjectModification: 
2017_07_28-AM-08_27_07
Theory : reals
Home
Index