Nuprl Lemma : simple-converges-to

x:ℕ ⟶ ℝ. ∀a,c:ℝ.  ((∀n:ℕ(|(x n) a| ≤ ((r1/r(2^n)) c)))  lim n→∞.x a)


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y rmul: b int-to-real: r(n) real: exp: i^n nat: all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A sq_type: SQType(T) false: False prop: exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q sq_exists: x:A [B[x]] nat_plus: + ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top less_than: a < b squash: T less_than': less_than'(a;b) uiff: uiff(P;Q) int_upper: {i...} le: A ≤ B rneq: x ≠ y rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2 rge: x ≥ y converges-to: lim n→∞.x[n] y
Lemmas referenced :  istype-nat rleq_wf rabs_wf rsub_wf rmul_wf rdiv_wf int-to-real_wf exp_wf2 rneq-int not_functionality_wrt_implies equal-wf-base rationals_wf set_subtype_base le_wf istype-int int_subtype_base equal_functionality_wrt_subtype_rel2 int-subtype-rationals int_nzero-rational exp_wf3 subtype_base_sq nequal_wf real_wf r-archimedean nat_plus_wf decidable__equal_int nat_plus_properties nat_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le le_weakening2 mul-commutes zero-mul exp-positive-stronger decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than log-property log_wf add_nat_wf add-is-int-iff intformand_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma false_wf exp-nondecreasing itermMultiply_wf int_term_value_mul_lemma rless-int rless_wf rmul_preserves_rleq rinv_wf2 itermSubtract_wf rleq_functionality req_transitivity rmul-rinv3 req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma rleq-int rleq_functionality_wrt_implies rleq_weakening_equal rmul-int rmul_functionality req_weakening rmul-rinv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule functionIsType introduction extract_by_obid hypothesis universeIsType sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality closedConclusion natural_numberEquality independent_isectElimination dependent_functionElimination productElimination independent_functionElimination baseApply baseClosed intEquality lambdaEquality_alt because_Cache dependent_set_memberEquality_alt instantiate cumulativity equalityTransitivity equalitySymmetry voidElimination equalityIstype sqequalBase inhabitedIsType rename setElimination unionElimination dependent_set_memberFormation_alt approximateComputation dependent_pairFormation_alt isect_memberEquality_alt multiplyEquality independent_pairFormation imageMemberEquality addEquality applyLambdaEquality pointwiseFunctionality promote_hyp int_eqEquality inrFormation_alt

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a,c:\mBbbR{}.    ((\mforall{}n:\mBbbN{}.  (|(x  n)  -  a|  \mleq{}  ((r1/r(2\^{}n))  *  c)))  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x  n  =  a)



Date html generated: 2019_10_29-AM-10_10_51
Last ObjectModification: 2019_02_11-PM-02_08_29

Theory : reals


Home Index