Nuprl Lemma : sine-approx-for-small

a:{2...}. ∀N:ℕ+. ∀x:{x:ℝ|x| ≤ (r1/r(a))} .  (∃z:ℤ [(|sine(x) (r(z)/r(2 N))| ≤ (r(2)/r(N)))])


Proof




Definitions occuring in Statement :  sine: sine(x) rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y int-to-real: r(n) real: int_upper: {i...} nat_plus: + all: x:A. B[x] sq_exists: x:A [B[x]] set: {x:A| B[x]}  multiply: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat_plus: + int_upper: {i...} decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: uiff: uiff(P;Q) rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True sq_stable: SqStable(P) sq_exists: x:A [B[x]] nat: ge: i ≥  subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rless: x < y rdiv: (x/y) req_int_terms: t1 ≡ t2
Lemmas referenced :  rleq-int-fractions nat_plus_properties int_upper_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf istype-less_than decidable__le itermMultiply_wf int_term_value_mul_lemma sq_stable__rleq rabs_wf rdiv_wf int-to-real_wf rless-int rless_wf rleq_transitivity sine-approx-lemma-ext sine-approx_wf rleq_wf rsub_wf nat_properties real_wf nat_plus_wf istype-int_upper sine_wf radd_wf rnexp_wf itermAdd_wf int_term_value_add_lemma istype-le fact_wf exp_wf2 rneq-int intformeq_wf int_formula_prop_eq_lemma rleq_functionality_wrt_implies sine-poly-approx rleq_weakening_equal mul_bounds_1b mul_nat_plus radd_functionality_wrt_rleq rleq_functionality radd-int-fractions req_weakening rnexp-rleq zero-rleq-rabs rnexp-positive req_inversion rnexp-rdiv exp-positive rdiv_functionality rnexp-one rnexp-int exp_wf_nat_plus rmul_preserves_rleq rmul_wf rinv_wf2 itermSubtract_wf req_transitivity rmul-rinv3 req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality because_Cache dependent_set_memberEquality_alt setElimination rename hypothesisEquality hypothesis dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType productElimination multiplyEquality closedConclusion inrFormation_alt imageMemberEquality baseClosed imageElimination dependent_set_memberFormation_alt setIsType addEquality applyEquality inhabitedIsType equalityTransitivity equalitySymmetry applyLambdaEquality equalityIstype sqequalBase

Latex:
\mforall{}a:\{2...\}.  \mforall{}N:\mBbbN{}\msupplus{}.  \mforall{}x:\{x:\mBbbR{}|  |x|  \mleq{}  (r1/r(a))\}  .    (\mexists{}z:\mBbbZ{}  [(|sine(x)  -  (r(z)/r(2  *  N))|  \mleq{}  (r(2)/r(N)))])



Date html generated: 2019_10_29-AM-10_34_22
Last ObjectModification: 2019_02_01-PM-03_18_23

Theory : reals


Home Index