Nuprl Lemma : sine-approx-for-small
∀a:{2...}. ∀N:ℕ+. ∀x:{x:ℝ| |x| ≤ (r1/r(a))} .  (∃z:ℤ [(|sine(x) - (r(z)/r(2 * N))| ≤ (r(2)/r(N)))])
Proof
Definitions occuring in Statement : 
sine: sine(x)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
set: {x:A| B[x]} 
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
rneq: x ≠ y
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
sq_stable: SqStable(P)
, 
sq_exists: ∃x:A [B[x]]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
subtype_rel: A ⊆r B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
rless: x < y
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
rleq-int-fractions, 
nat_plus_properties, 
int_upper_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
istype-less_than, 
decidable__le, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
sq_stable__rleq, 
rabs_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
rleq_transitivity, 
sine-approx-lemma-ext, 
sine-approx_wf, 
rleq_wf, 
rsub_wf, 
nat_properties, 
real_wf, 
nat_plus_wf, 
istype-int_upper, 
sine_wf, 
radd_wf, 
rnexp_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-le, 
fact_wf, 
exp_wf2, 
rneq-int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rleq_functionality_wrt_implies, 
sine-poly-approx, 
rleq_weakening_equal, 
mul_bounds_1b, 
mul_nat_plus, 
radd_functionality_wrt_rleq, 
rleq_functionality, 
radd-int-fractions, 
req_weakening, 
rnexp-rleq, 
zero-rleq-rabs, 
rnexp-positive, 
req_inversion, 
rnexp-rdiv, 
exp-positive, 
rdiv_functionality, 
rnexp-one, 
rnexp-int, 
exp_wf_nat_plus, 
rmul_preserves_rleq, 
rmul_wf, 
rinv_wf2, 
itermSubtract_wf, 
req_transitivity, 
rmul-rinv3, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
because_Cache, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
productElimination, 
multiplyEquality, 
closedConclusion, 
inrFormation_alt, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberFormation_alt, 
setIsType, 
addEquality, 
applyEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
equalityIstype, 
sqequalBase
Latex:
\mforall{}a:\{2...\}.  \mforall{}N:\mBbbN{}\msupplus{}.  \mforall{}x:\{x:\mBbbR{}|  |x|  \mleq{}  (r1/r(a))\}  .    (\mexists{}z:\mBbbZ{}  [(|sine(x)  -  (r(z)/r(2  *  N))|  \mleq{}  (r(2)/r(N)))])
Date html generated:
2019_10_29-AM-10_34_22
Last ObjectModification:
2019_02_01-PM-03_18_23
Theory : reals
Home
Index