Nuprl Lemma : sine-poly-approx

[x:{x:ℝ|x| ≤ (r1/r(2))} ]. ∀[k:ℕ]. ∀[N:ℕ+].
  (|sine(x) (r(sine-approx(x;k;N))/r(2 N))| ≤ ((|x|^(2 k) 3/r(((2 k) 3)!)) (r1/r(N))))


Proof




Definitions occuring in Statement :  sine-approx: sine-approx(x;k;N) sine: sine(x) rdiv: (x/y) rleq: x ≤ y rabs: |x| rnexp: x^k1 rsub: y radd: b int-to-real: r(n) real: fact: (n)! nat_plus: + nat: uall: [x:A]. B[x] set: {x:A| B[x]}  multiply: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: sq_stable: SqStable(P) ireal-approx: j-approx(x;M;z) rev_uimplies: rev_uimplies(P;Q) nat_plus: + nat: ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top so_lambda: λ2x.t[x] subtype_rel: A ⊆B le: A ≤ B int_seg: {i..j-} lelt: i ≤ j < k so_apply: x[s] rge: x ≥ y cand: c∧ B uiff: uiff(P;Q) stable: Stable{P} rless: x < y sq_exists: x:A [B[x]] pointwise-req: x[k] y[k] for k ∈ [n,m] req_int_terms: t1 ≡ t2 ifthenelse: if then else fi  btrue: tt rdiv: (x/y)
Lemmas referenced :  sine-approx-property sq_stable__rleq rabs_wf rdiv_wf int-to-real_wf rless-int rless_wf rleq_functionality_wrt_implies rsub_wf sine_wf sine-approx_wf nat_plus_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf radd_wf rsum_wf int-rmul_wf fastexp_wf int_seg_subtype_nat istype-false int-rdiv_wf fact_wf int_seg_properties decidable__le intformle_wf itermAdd_wf int_formula_prop_le_lemma int_term_value_add_lemma istype-le rnexp_wf int_seg_wf rleq_weakening_equal r-triangle-inequality2 radd_functionality_wrt_rleq nat_plus_wf istype-nat real_wf rleq_wf sine-poly-approx-1 zero-rleq-rabs rleq-int-fractions3 istype-less_than rleq_transitivity rleq_functionality radd_functionality req_weakening stable_req nat_plus_inc_int_nzero false_wf not_wf req_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle rabs-of-nonpos rleq_weakening_rless rminus_wf squash_wf true_wf rabs-rminus subtype_rel_self iff_weakening_equal rabs_functionality req_functionality rsub_functionality sine_functionality rsum_functionality2 int-rmul_functionality int-rdiv_functionality rnexp_functionality radd-preserves-req itermSubtract_wf itermMinus_wf rsum_functionality sine-rminus req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_minus_lemma real_term_value_const_lemma req_inversion rsum-rminus rmul_wf intformeq_wf int_formula_prop_eq_lemma req_transitivity int-rmul-req rmul_functionality int-rdiv-req rminus_functionality ifthenelse_wf isOdd_wf isOdd-2n+1 rnexp-rminus rdiv_functionality rinv_wf2 rinv-mul-as-rdiv real_term_value_mul_lemma not-rless rabs-of-nonneg
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality independent_functionElimination closedConclusion natural_numberEquality independent_isectElimination sqequalRule inrFormation_alt dependent_functionElimination because_Cache productElimination independent_pairFormation imageMemberEquality baseClosed universeIsType imageElimination multiplyEquality unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination minusEquality applyEquality lambdaFormation_alt dependent_set_memberEquality_alt addEquality inhabitedIsType equalityTransitivity equalitySymmetry applyLambdaEquality setIsType productIsType unionEquality functionEquality functionIsType unionIsType instantiate universeEquality equalityIstype

Latex:
\mforall{}[x:\{x:\mBbbR{}|  |x|  \mleq{}  (r1/r(2))\}  ].  \mforall{}[k:\mBbbN{}].  \mforall{}[N:\mBbbN{}\msupplus{}].
    (|sine(x)  -  (r(sine-approx(x;k;N))/r(2  *  N))|  \mleq{}  ((|x|\^{}(2  *  k)  +  3/r(((2  *  k)  +  3)!))  +  (r1/r(N))))



Date html generated: 2019_10_29-AM-10_32_18
Last ObjectModification: 2019_02_01-AM-11_27_35

Theory : reals


Home Index