Nuprl Lemma : sine-rminus
∀x:ℝ. (sine(-(x)) = -(sine(x)))
Proof
Definitions occuring in Statement : 
sine: sine(x)
, 
req: x = y
, 
rminus: -(x)
, 
real: ℝ
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
isOdd: isOdd(n)
, 
true: True
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
rneq: x ≠ y
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rdiv: (x/y)
Lemmas referenced : 
sine-is-limit, 
rminus_wf, 
real_wf, 
int-rmul_wf, 
fastexp_wf, 
int-rdiv_wf, 
fact_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
nat_plus_inc_int_nzero, 
rnexp_wf, 
istype-nat, 
ifthenelse_wf, 
isOdd_wf, 
sine_wf, 
bool_wf, 
btrue_wf, 
series-sum-unique, 
series-sum_functionality, 
int-rmul_functionality, 
int-rdiv_functionality, 
rnexp-rminus, 
req_weakening, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
eq_int_wf, 
mod2-add1, 
subtype_rel_self, 
iff_weakening_equal, 
mod2-2n, 
series-sum_wf, 
int_nzero_wf, 
series-sum-linear2, 
int-to-real_wf, 
rmul_wf, 
itermSubtract_wf, 
itermMinus_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
nat_plus_properties, 
rdiv_wf, 
rless-int, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
rless_wf, 
req_functionality, 
rmul_functionality, 
req_transitivity, 
int-rmul-req, 
int-rdiv-req, 
rinv_wf2, 
rminus_functionality, 
rinv-mul-as-rdiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
universeIsType, 
lambdaEquality_alt, 
minusEquality, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
addEquality, 
multiplyEquality, 
setElimination, 
rename, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
applyEquality, 
because_Cache, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
imageElimination, 
instantiate, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
functionIsType, 
applyLambdaEquality, 
equalityIstype, 
closedConclusion, 
inrFormation_alt
Latex:
\mforall{}x:\mBbbR{}.  (sine(-(x))  =  -(sine(x)))
Date html generated:
2019_10_29-AM-10_30_44
Last ObjectModification:
2019_02_01-AM-10_55_54
Theory : reals
Home
Index