Nuprl Lemma : sine-rminus

x:ℝ(sine(-(x)) -(sine(x)))


Proof




Definitions occuring in Statement :  sine: sine(x) req: y rminus: -(x) real: all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: subtype_rel: A ⊆B nat_plus: + isOdd: isOdd(n) true: True eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} squash: T iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 rneq: x ≠ y rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y)
Lemmas referenced :  sine-is-limit rminus_wf real_wf int-rmul_wf fastexp_wf int-rdiv_wf fact_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nat_plus_inc_int_nzero rnexp_wf istype-nat ifthenelse_wf isOdd_wf sine_wf bool_wf btrue_wf series-sum-unique series-sum_functionality int-rmul_functionality int-rdiv_functionality rnexp-rminus req_weakening equal_wf squash_wf true_wf istype-universe eq_int_wf mod2-add1 subtype_rel_self iff_weakening_equal mod2-2n series-sum_wf int_nzero_wf series-sum-linear2 int-to-real_wf rmul_wf itermSubtract_wf itermMinus_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma real_term_value_minus_lemma nat_plus_properties rdiv_wf rless-int decidable__lt intformless_wf int_formula_prop_less_lemma rless_wf req_functionality rmul_functionality req_transitivity int-rmul-req int-rdiv-req rinv_wf2 rminus_functionality rinv-mul-as-rdiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis universeIsType lambdaEquality_alt minusEquality natural_numberEquality dependent_set_memberEquality_alt addEquality multiplyEquality setElimination rename unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation applyEquality because_Cache inhabitedIsType equalityTransitivity equalitySymmetry intEquality imageElimination instantiate universeEquality imageMemberEquality baseClosed productElimination functionIsType applyLambdaEquality equalityIstype closedConclusion inrFormation_alt

Latex:
\mforall{}x:\mBbbR{}.  (sine(-(x))  =  -(sine(x)))



Date html generated: 2019_10_29-AM-10_30_44
Last ObjectModification: 2019_02_01-AM-10_55_54

Theory : reals


Home Index