Nuprl Lemma : rcos-1-implies-at-least-2pi
∀x:{x:ℝ| r0 < x} . ((rcos(x) = r1) ⇒ (2 * π ≤ x))
Proof
Definitions occuring in Statement : 
pi: π, 
rcos: rcos(x), 
rleq: x ≤ y, 
rless: x < y, 
int-rmul: k1 * a, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
rfun: I ⟶ℝ, 
true: True, 
and: P ∧ Q, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
isl: isl(x), 
rccint: [l, u], 
i-finite: i-finite(I), 
top: Top, 
iproper: iproper(I), 
subinterval: I ⊆ J , 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
real-fun: real-fun(f;a;b), 
ifun: ifun(f;I), 
rsub: x - y, 
squash: ↓T, 
cand: A c∧ B, 
sq_stable: SqStable(P), 
or: P ∨ Q, 
guard: {T}, 
strictly-increasing-on-interval: f[x] strictly-increasing for x ∈ I, 
not: ¬A, 
false: False, 
strictly-decreasing-on-interval: f[x] strictly-decreasing for x ∈ I
Lemmas referenced : 
rless_wf, 
real_wf, 
set_wf, 
int-to-real_wf, 
rcos_wf, 
req_wf, 
rcos-strictly-decreasing, 
rmul-distrib2, 
rmul-identity1, 
req_inversion, 
rminus-as-rmul, 
radd_functionality, 
req_transitivity, 
radd-int, 
rmul_functionality, 
rmul-zero-both, 
rmul-one-both, 
int-rmul-req, 
req_weakening, 
rless_functionality, 
radd_wf, 
pi-positive, 
radd-preserves-rless, 
rmul_wf, 
rooint_wf, 
rsin_wf, 
rminus_wf, 
i-member_wf, 
derivative-implies-strictly-increasing-closed, 
int-rmul_wf, 
pi_wf, 
rccint_wf, 
i-finite_wf, 
right_endpoint_rccint_lemma, 
left_endpoint_rccint_lemma, 
deriviative-rcos, 
rleq_wf, 
member_riiint_lemma, 
member_rccint_lemma, 
riiint_wf, 
derivative_functionality_wrt_subinterval, 
rsin_functionality, 
rminus_functionality, 
req_functionality, 
right-endpoint_wf, 
left-endpoint_wf, 
radd-zero-both, 
radd_comm, 
rleq_functionality, 
uiff_transitivity, 
radd-preserves-rleq, 
radd-rminus-assoc, 
radd-ac, 
radd-assoc, 
rsub_wf, 
rsin-shift-pi, 
sq_stable__rleq, 
rsin-nonneg, 
member_rooint_lemma, 
rsin-positive, 
radd-rminus-both, 
sq_stable__rless, 
rless-cases, 
rleq-iff-all-rless, 
rleq_weakening_rless, 
rleq_weakening_equal, 
rless_transitivity2, 
rcos_functionality, 
rcos0, 
rcos-shift-2pi, 
rless_irreflexivity, 
rleq_weakening, 
rless_transitivity1, 
not-rless
Rules used in proof : 
lambdaEquality, 
sqequalRule, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
addLevel, 
independent_isectElimination, 
addEquality, 
minusEquality, 
productElimination, 
because_Cache, 
setEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
independent_functionElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
productEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
levelHypothesis, 
unionElimination, 
promote_hyp
Latex:
\mforall{}x:\{x:\mBbbR{}|  r0  <  x\}  .  ((rcos(x)  =  r1)  {}\mRightarrow{}  (2  *  \mpi{}  \mleq{}  x))
Date html generated:
2016_10_26-PM-00_26_37
Last ObjectModification:
2016_10_12-PM-03_52_26
Theory : reals_2
Home
Index