Nuprl Lemma : strictly-increasing-seq-add
∀[n:ℕ]. ∀[s:ℕn ⟶ ℤ].
  ∀x,y:ℕ.  (x < y ⇒ strictly-increasing-seq(n + 1;s.x@n) ⇒ strictly-increasing-seq(n + 2;s.x@n.y@n + 1))
Proof
Definitions occuring in Statement : 
strictly-increasing-seq: strictly-increasing-seq(n;s), 
seq-add: s.x@n, 
int_seg: {i..j-}, 
nat: ℕ, 
less_than: a < b, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
strictly-increasing-seq: strictly-increasing-seq(n;s), 
member: t ∈ T, 
int_seg: {i..j-}, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
prop: ℙ, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
squash: ↓T, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
top: Top, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
sq_type: SQType(T), 
guard: {T}, 
seq-add: s.x@n, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
lelt: i ≤ j < k, 
bfalse: ff, 
exists: ∃x:A. B[x], 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
less_than: a < b
Lemmas referenced : 
decidable__int_equal, 
int_seg_wf, 
strictly-increasing-seq_wf, 
decidable__le, 
false_wf, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
le_wf, 
seq-add_wf, 
less_than_wf, 
nat_wf, 
subtype_base_sq, 
int_subtype_base, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
decidable__lt, 
not-lt-2, 
add-mul-special, 
zero-mul, 
and_wf, 
not-equal-2, 
less-iff-le, 
le_antisymmetry_iff, 
le-add-cancel2, 
less_than_transitivity2, 
le_weakening2, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
addEquality, 
natural_numberEquality, 
unionElimination, 
isectElimination, 
hypothesisEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
voidElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
minusEquality, 
functionExtensionality, 
functionEquality, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
int_eqReduceTrueSq, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
impliesFunctionality, 
int_eqReduceFalseSq, 
multiplyEquality, 
hyp_replacement, 
int_eqEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].
    \mforall{}x,y:\mBbbN{}.
        (x  <  y  {}\mRightarrow{}  strictly-increasing-seq(n  +  1;s.x@n)  {}\mRightarrow{}  strictly-increasing-seq(n  +  2;s.x@n.y@n  +  1))
Date html generated:
2017_04_14-AM-07_26_21
Last ObjectModification:
2017_02_27-PM-02_56_34
Theory : bar-induction
Home
Index