Nuprl Lemma : strictly-increasing-seq-add

[n:ℕ]. ∀[s:ℕn ⟶ ℤ].
  ∀x,y:ℕ.  (x <  strictly-increasing-seq(n 1;s.x@n)  strictly-increasing-seq(n 2;s.x@n.y@n 1))


Proof




Definitions occuring in Statement :  strictly-increasing-seq: strictly-increasing-seq(n;s) seq-add: s.x@n int_seg: {i..j-} nat: less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q strictly-increasing-seq: strictly-increasing-seq(n;s) member: t ∈ T int_seg: {i..j-} nat: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True sq_type: SQType(T) guard: {T} seq-add: s.x@n bool: 𝔹 unit: Unit it: btrue: tt lelt: i ≤ j < k bfalse: ff exists: x:A. B[x] bnot: ¬bb ifthenelse: if then else fi  assert: b less_than: a < b
Lemmas referenced :  decidable__int_equal int_seg_wf strictly-increasing-seq_wf decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf seq-add_wf less_than_wf nat_wf subtype_base_sq int_subtype_base eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int less_than_transitivity1 le_weakening less_than_irreflexivity eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot decidable__lt not-lt-2 add-mul-special zero-mul and_wf not-equal-2 less-iff-le le_antisymmetry_iff le-add-cancel2 less_than_transitivity2 le_weakening2 squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid dependent_functionElimination thin setElimination rename because_Cache hypothesis addEquality natural_numberEquality unionElimination isectElimination hypothesisEquality dependent_set_memberEquality independent_pairFormation voidElimination productElimination independent_functionElimination independent_isectElimination sqequalRule imageMemberEquality baseClosed imageElimination applyEquality lambdaEquality isect_memberEquality voidEquality intEquality minusEquality functionExtensionality functionEquality instantiate cumulativity equalityTransitivity equalitySymmetry int_eqReduceTrueSq equalityElimination dependent_pairFormation promote_hyp impliesFunctionality int_eqReduceFalseSq multiplyEquality hyp_replacement int_eqEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].
    \mforall{}x,y:\mBbbN{}.
        (x  <  y  {}\mRightarrow{}  strictly-increasing-seq(n  +  1;s.x@n)  {}\mRightarrow{}  strictly-increasing-seq(n  +  2;s.x@n.y@n  +  1))



Date html generated: 2017_04_14-AM-07_26_21
Last ObjectModification: 2017_02_27-PM-02_56_34

Theory : bar-induction


Home Index