Nuprl Lemma : KleeneSearch_wf

[T:{T:Type| (T ⊆r ℕ) ∧ (↓T)} ]. ∀[F:(ℕ ⟶ T) ⟶ ℕ]. ∀[M:⇃(basic-strong-continuity(T;F))]. ∀[f:ℕ ⟶ T]. ∀[start:ℕ].
  (KleeneSearch(M;f;start) ∈ ⇃({m:ℕ(start ≤ m) ∧ (∀g:ℕ ⟶ T. ((g f ∈ (ℕm ⟶ T))  ((F g) (F f) ∈ ℤ)))} ))


Proof




Definitions occuring in Statement :  KleeneSearch: KleeneSearch(M;f;n) basic-strong-continuity: basic-strong-continuity(T;F) quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] squash: T implies:  Q and: P ∧ Q true: True member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] basic-strong-continuity: basic-strong-continuity(T;F) sq_exists: x:A [B[x]] and: P ∧ Q exists: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) KleeneSearch: KleeneSearch(M;f;n) less_than': less_than'(a;b) has-value: (a)↓ b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] quotient: x,y:A//B[x; y] true: True rev_implies:  Q iff: ⇐⇒ Q squash: T cand: c∧ B label: ...$L... t pi1: fst(t) it: btrue: tt uiff: uiff(P;Q) bfalse: ff bnot: ¬bb assert: b rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base lelt_wf int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self subtype_rel_function nat_wf int_seg_subtype_nat istype-false value-type-has-value b-union_wf bunion-value-type set-value-type le_wf int-value-type product-value-type itermAdd_wf int_term_value_add_lemma basic-strong-continuity_wf quotient_wf all_wf equal_wf equal-wf-base true_wf equiv_rel_true quotient-member-eq istype-true istype-nat istype-universe subtype_rel_wf squash_wf false_wf istype-top top_wf pi2_wf isint-int iff_weakening_equal subtype_rel-equal trivial-equal member_wf ext-eq_weakening subtype_rel_weakening subtype_rel_b-union-left product_subtype_base ifthenelse_wf bool_wf tunion_subtype_base subtype_rel_b-union-right imax_wf imax_nat add_nat_wf le_int_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot iff_weakening_uiff assert_wf add_functionality_wrt_eq imax_unfold imax_ub le_functionality le_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  sqequalHypSubstitution setElimination rename hypothesis dependent_functionElimination hypothesisEquality productElimination extract_by_obid isectElimination sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  applyLambdaEquality unionElimination applyEquality instantiate cumulativity intEquality Error :dependent_set_memberEquality_alt,  because_Cache Error :productIsType,  hypothesis_subsumption callbyvalueReduce productEquality imageElimination equalityElimination isintReduceTrue Error :equalityIstype,  addEquality pointwiseFunctionalityForEquality setEquality functionEquality closedConclusion Error :setIsType,  Error :functionIsType,  sqequalBase pertypeElimination promote_hyp Error :isectIsTypeImplies,  universeEquality independent_pairEquality baseClosed imageMemberEquality Error :inrFormation_alt

Latex:
\mforall{}[T:\{T:Type|  (T  \msubseteq{}r  \mBbbN{})  \mwedge{}  (\mdownarrow{}T)\}  ].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[M:\00D9(basic-strong-continuity(T;F))].
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].  \mforall{}[start:\mBbbN{}].
    (KleeneSearch(M;f;start)  \mmember{}  \00D9(\{m:\mBbbN{}|  (start  \mleq{}  m)  \mwedge{}  (\mforall{}g:\mBbbN{}  {}\mrightarrow{}  T.  ((g  =  f)  {}\mRightarrow{}  ((F  g)  =  (F  f))))\}  ))



Date html generated: 2019_06_20-PM-02_51_01
Last ObjectModification: 2019_03_06-AM-10_52_09

Theory : continuity


Home Index