Nuprl Lemma : KleeneSearch_wf
∀[T:{T:Type| (T ⊆r ℕ) ∧ (↓T)} ]. ∀[F:(ℕ ⟶ T) ⟶ ℕ]. ∀[M:⇃(basic-strong-continuity(T;F))]. ∀[f:ℕ ⟶ T]. ∀[start:ℕ].
  (KleeneSearch(M;f;start) ∈ ⇃({m:ℕ| (start ≤ m) ∧ (∀g:ℕ ⟶ T. ((g = f ∈ (ℕm ⟶ T)) 
⇒ ((F g) = (F f) ∈ ℤ)))} ))
Proof
Definitions occuring in Statement : 
KleeneSearch: KleeneSearch(M;f;n)
, 
basic-strong-continuity: basic-strong-continuity(T;F)
, 
quotient: x,y:A//B[x; y]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
true: True
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
basic-strong-continuity: basic-strong-continuity(T;F)
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
prop: ℙ
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
KleeneSearch: KleeneSearch(M;f;n)
, 
less_than': less_than'(a;b)
, 
has-value: (a)↓
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
quotient: x,y:A//B[x; y]
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
cand: A c∧ B
, 
label: ...$L... t
, 
pi1: fst(t)
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
int_seg_properties, 
int_seg_wf, 
subtract-1-ge-0, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
subtype_rel_self, 
subtype_rel_function, 
nat_wf, 
int_seg_subtype_nat, 
istype-false, 
value-type-has-value, 
b-union_wf, 
bunion-value-type, 
set-value-type, 
le_wf, 
int-value-type, 
product-value-type, 
itermAdd_wf, 
int_term_value_add_lemma, 
basic-strong-continuity_wf, 
quotient_wf, 
all_wf, 
equal_wf, 
equal-wf-base, 
true_wf, 
equiv_rel_true, 
quotient-member-eq, 
istype-true, 
istype-nat, 
istype-universe, 
subtype_rel_wf, 
squash_wf, 
false_wf, 
istype-top, 
top_wf, 
pi2_wf, 
isint-int, 
iff_weakening_equal, 
subtype_rel-equal, 
trivial-equal, 
member_wf, 
ext-eq_weakening, 
subtype_rel_weakening, 
subtype_rel_b-union-left, 
product_subtype_base, 
ifthenelse_wf, 
bool_wf, 
tunion_subtype_base, 
subtype_rel_b-union-right, 
imax_wf, 
imax_nat, 
add_nat_wf, 
le_int_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
add_functionality_wrt_eq, 
imax_unfold, 
imax_ub, 
le_functionality, 
le_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
setElimination, 
rename, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
productElimination, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
applyLambdaEquality, 
unionElimination, 
applyEquality, 
instantiate, 
cumulativity, 
intEquality, 
Error :dependent_set_memberEquality_alt, 
because_Cache, 
Error :productIsType, 
hypothesis_subsumption, 
callbyvalueReduce, 
productEquality, 
imageElimination, 
equalityElimination, 
isintReduceTrue, 
Error :equalityIstype, 
addEquality, 
pointwiseFunctionalityForEquality, 
setEquality, 
functionEquality, 
closedConclusion, 
Error :setIsType, 
Error :functionIsType, 
sqequalBase, 
pertypeElimination, 
promote_hyp, 
Error :isectIsTypeImplies, 
universeEquality, 
independent_pairEquality, 
baseClosed, 
imageMemberEquality, 
Error :inrFormation_alt
Latex:
\mforall{}[T:\{T:Type|  (T  \msubseteq{}r  \mBbbN{})  \mwedge{}  (\mdownarrow{}T)\}  ].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[M:\00D9(basic-strong-continuity(T;F))].
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].  \mforall{}[start:\mBbbN{}].
    (KleeneSearch(M;f;start)  \mmember{}  \00D9(\{m:\mBbbN{}|  (start  \mleq{}  m)  \mwedge{}  (\mforall{}g:\mBbbN{}  {}\mrightarrow{}  T.  ((g  =  f)  {}\mRightarrow{}  ((F  g)  =  (F  f))))\}  ))
Date html generated:
2019_06_20-PM-02_51_01
Last ObjectModification:
2019_03_06-AM-10_52_09
Theory : continuity
Home
Index