Nuprl Lemma : simple-decidable-finite-cantor

[T:Type]. ∀[R:T ⟶ ℙ].  ((∀x:T. Dec(R[x]))  (∀n:ℕ. ∀F:(ℕn ⟶ 𝔹) ⟶ T.  Dec(∃f:ℕn ⟶ 𝔹R[F f])))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T nat: prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top guard: {T} subtype_rel: A ⊆B sq_exists: x:A [B[x]] cand: c∧ B sq_stable: SqStable(P) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) le: A ≤ B less_than': less_than'(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b select: L[n] cons: [a b] nil: [] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  int_seg_wf bool_wf nat_wf all_wf decidable_wf equal_wf length_wf subtract_wf list_wf isect_wf sq_exists_wf nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf select_wf int_seg_properties decidable__le intformle_wf int_formula_prop_le_lemma intformeq_wf int_formula_prop_eq_lemma subtype_rel_self set_wf less_than_wf primrec-wf2 not_wf sq_stable__and sq_stable__all sq_stable__equal squash_wf sq_stable_from_decidable true_wf iff_weakening_equal subtype_base_sq int_subtype_base decidable__equal_int itermAdd_wf int_term_value_add_lemma append_wf cons_wf btrue_wf nil_wf length-append length-singleton add_functionality_wrt_eq select_append_front bfalse_wf select-append subtype_rel_list top_wf int_seg_subtype_nat false_wf lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot not_functionality_wrt_uiff assert_wf bool_cases non_neg_length length_of_cons_lemma length_of_nil_lemma exists_wf stuck-spread base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut functionEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality cumulativity universeEquality axiomEquality intEquality because_Cache productEquality functionExtensionality dependent_set_memberEquality productElimination independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry instantiate inlFormation inrFormation dependent_set_memberFormation imageMemberEquality baseClosed imageElimination hyp_replacement addEquality promote_hyp equalityElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:T.  Dec(R[x]))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}F:(\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T.    Dec(\mexists{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.  R[F  f])))



Date html generated: 2019_06_20-PM-02_49_49
Last ObjectModification: 2018_09_26-AM-09_54_22

Theory : continuity


Home Index