Nuprl Lemma : sqntype_list
∀[A:Type]. ∀[n:ℕ].  sqntype(n;A List) supposing sqntype(n;A)
Proof
Definitions occuring in Statement : 
list: T List
, 
sqntype: sqntype(n;T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sqntype: sqntype(n;T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
cons: [a / b]
, 
top: Top
, 
and: P ∧ Q
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
label: ...$L... t
, 
sq_stable: SqStable(P)
Lemmas referenced : 
sqntype_wf, 
nat_wf, 
length_wf_nat, 
length_wf, 
list_wf, 
base_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
subtract-1-ge-0, 
int_subtype_base, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
null_nil_lemma, 
btrue_wf, 
null_cons_lemma, 
istype-void, 
bfalse_wf, 
null_wf, 
btrue_neq_bfalse, 
length_of_cons_lemma, 
le_weakening2, 
non_neg_length, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
istype-int, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
set_subtype_base, 
le_wf, 
subtract_wf, 
add-associates, 
minus-zero, 
add-swap, 
subtype_base_sq, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
tl_wf, 
subtype_rel_self, 
iff_weakening_equal, 
length_tl, 
decidable__le, 
istype-false, 
not-ge-2, 
less-iff-le, 
le-add-cancel2, 
reduce_tl_nil_lemma, 
le_weakening, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
subtype_rel_wf, 
hd_wf, 
decidable__lt, 
sq_stable__le, 
decidable__equal_int, 
not-equal-2, 
not-lt-2, 
subtract-add-cancel, 
sqequal_n_add, 
not-le-2, 
minus-minus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
Error :axiomSqequalN, 
hypothesis, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
Error :isect_memberEquality_alt, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
Error :lambdaFormation_alt, 
Error :equalityIsType1, 
independent_functionElimination, 
Error :equalityIsType4, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
voidElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
Error :productIsType, 
Error :equalityIsType3, 
applyLambdaEquality, 
Error :dependent_pairFormation_alt, 
sqequalIntensionalEquality, 
addEquality, 
minusEquality, 
intEquality, 
instantiate, 
cumulativity, 
sqequalnReflexivity, 
imageElimination, 
imageMemberEquality, 
Error :equalityIsType2, 
hyp_replacement, 
sqequal_n rule, 
sqequalZero
Latex:
\mforall{}[A:Type].  \mforall{}[n:\mBbbN{}].    sqntype(n;A  List)  supposing  sqntype(n;A)
Date html generated:
2019_06_20-PM-00_44_19
Last ObjectModification:
2018_10_07-AM-00_39_05
Theory : list_0
Home
Index