Nuprl Lemma : sqntype_list

[A:Type]. ∀[n:ℕ].  sqntype(n;A List) supposing sqntype(n;A)


Proof




Definitions occuring in Statement :  list: List sqntype: sqntype(n;T) nat: uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sqntype: sqntype(n;T) all: x:A. B[x] implies:  Q prop: nat: false: False ge: i ≥  guard: {T} subtype_rel: A ⊆B or: P ∨ Q cons: [a b] top: Top and: P ∧ Q not: ¬A exists: x:A. B[x] uiff: uiff(P;Q) subtract: m le: A ≤ B less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) squash: T iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) label: ...$L... t sq_stable: SqStable(P)
Lemmas referenced :  sqntype_wf nat_wf length_wf_nat length_wf list_wf base_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf subtract-1-ge-0 int_subtype_base list-cases length_of_nil_lemma product_subtype_list null_nil_lemma btrue_wf null_cons_lemma istype-void bfalse_wf null_wf btrue_neq_bfalse length_of_cons_lemma le_weakening2 non_neg_length le_antisymmetry_iff condition-implies-le minus-add istype-int minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-zero le-add-cancel set_subtype_base le_wf subtract_wf add-associates minus-zero add-swap subtype_base_sq equal_wf squash_wf true_wf istype-universe tl_wf subtype_rel_self iff_weakening_equal length_tl decidable__le istype-false not-ge-2 less-iff-le le-add-cancel2 reduce_tl_nil_lemma le_weakening reduce_hd_cons_lemma reduce_tl_cons_lemma subtype_rel_wf hd_wf decidable__lt sq_stable__le decidable__equal_int not-equal-2 not-lt-2 subtract-add-cancel sqequal_n_add not-le-2 minus-minus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalHypSubstitution Error :lambdaEquality_alt,  dependent_functionElimination thin hypothesisEquality Error :axiomSqequalN,  hypothesis Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :universeIsType,  extract_by_obid isectElimination Error :isect_memberEquality_alt,  because_Cache equalityTransitivity equalitySymmetry universeEquality Error :lambdaFormation_alt,  Error :equalityIsType1,  independent_functionElimination Error :equalityIsType4,  setElimination rename intWeakElimination natural_numberEquality independent_isectElimination voidElimination baseApply closedConclusion baseClosed applyEquality unionElimination promote_hyp hypothesis_subsumption productElimination Error :dependent_set_memberEquality_alt,  independent_pairFormation Error :productIsType,  Error :equalityIsType3,  applyLambdaEquality Error :dependent_pairFormation_alt,  sqequalIntensionalEquality addEquality minusEquality intEquality instantiate cumulativity sqequalnReflexivity imageElimination imageMemberEquality Error :equalityIsType2,  hyp_replacement sqequal_n rule sqequalZero

Latex:
\mforall{}[A:Type].  \mforall{}[n:\mBbbN{}].    sqntype(n;A  List)  supposing  sqntype(n;A)



Date html generated: 2019_06_20-PM-00_44_19
Last ObjectModification: 2018_10_07-AM-00_39_05

Theory : list_0


Home Index