Nuprl Lemma : exp-convex
∀[a,b,c:ℕ]. ∀[n:ℕ+].  |a - b| ≤ c supposing |a^n - b^n| ≤ c^n
Proof
Definitions occuring in Statement : 
exp: i^n, 
absval: |i|, 
nat_plus: ℕ+, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
subtract: n - m
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat_plus: ℕ+, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
false: False, 
nat: ℕ, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
true: True, 
less_than': less_than'(a;b), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
squash: ↓T, 
guard: {T}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
less_than: a < b
Lemmas referenced : 
nat_plus_properties, 
less_than'_wf, 
absval_wf, 
subtract_wf, 
le_wf, 
exp_wf2, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
isect_wf, 
primrec-wf-nat-plus, 
nat_plus_subtype_nat, 
nat_plus_wf, 
nat_wf, 
false_wf, 
decidable__lt, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
add-subtract-cancel, 
squash_wf, 
true_wf, 
exp1, 
iff_weakening_equal, 
exp_step, 
multiply-is-int-iff, 
absval-diff-product-bound, 
exp_wf4, 
exp_preserves_le, 
absval-diff-symmetry, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
imax_unfold, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
imin_unfold, 
exp_preserves_lt, 
set_subtype_base, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
mul_preserves_lt, 
less_than_transitivity2, 
mul_preserves_le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
because_Cache, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
cumulativity, 
universeEquality, 
isectEquality, 
independent_functionElimination, 
minusEquality, 
addLevel, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
multiplyEquality, 
instantiate, 
equalityElimination, 
applyLambdaEquality
Latex:
\mforall{}[a,b,c:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    |a  -  b|  \mleq{}  c  supposing  |a\^{}n  -  b\^{}n|  \mleq{}  c\^{}n
Date html generated:
2018_05_21-PM-01_05_39
Last ObjectModification:
2018_01_28-PM-02_01_56
Theory : num_thy_1
Home
Index