Nuprl Lemma : bag-member-two-factorizations
∀[n:ℕ]. ∀[a,b:ℤ].  uiff(<a, b> ↓∈ two-factorizations(n);(1 ≤ a) ∧ (a ≤ n) ∧ ((a * b) = n ∈ ℤ))
Proof
Definitions occuring in Statement : 
two-factorizations: two-factorizations(n)
, 
bag-member: x ↓∈ bs
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
nat: ℕ
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
bag-member: x ↓∈ bs
, 
squash: ↓T
, 
two-factorizations: two-factorizations(n)
, 
nequal: a ≠ b ∈ T 
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
guard: {T}
, 
less_than: a < b
, 
cand: A c∧ B
, 
int_nzero: ℤ-o
, 
sq_stable: SqStable(P)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
divides: b | a
, 
nat_plus: ℕ+
, 
less_than': less_than'(a;b)
, 
true: True
, 
gt: i > j
, 
div_nrel: Div(a;n;q)
, 
lelt: i ≤ j < k
Lemmas referenced : 
bag-member-list, 
decidable__equal_product, 
decidable__equal_int, 
two-factorizations_wf, 
subtype_rel_list, 
equal_wf, 
less_than'_wf, 
bag-member_wf, 
list-subtype-bag, 
le_wf, 
equal-wf-base-T, 
uiff_wf, 
l_member_wf, 
int_subtype_base, 
nat_wf, 
member-mapfilter, 
less_than_wf, 
from-upto_wf, 
set_wf, 
eq_int_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
equal-wf-T-base, 
assert_wf, 
mapfilter_wf, 
int_nzero_wf, 
subtype_rel_sets, 
nequal_wf, 
int_nzero_properties, 
intformnot_wf, 
int_formula_prop_not_lemma, 
exists_wf, 
sq_stable__le, 
decidable__le, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
assert_of_eq_int, 
subtype_base_sq, 
div_rem_sum, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
decidable__lt, 
member-from-upto, 
divides_iff_rem_zero, 
div_unique2, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
pos_mul_arg_bounds, 
intformimplies_wf, 
intformor_wf, 
int_formual_prop_imp_lemma, 
int_formula_prop_or_lemma
Rules used in proof : 
cut, 
addLevel, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
independent_isectElimination, 
extract_by_obid, 
isectElimination, 
productEquality, 
intEquality, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
independent_pairEquality, 
applyEquality, 
setEquality, 
multiplyEquality, 
setElimination, 
rename, 
voidElimination, 
cumulativity, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
baseApply, 
closedConclusion, 
isect_memberEquality, 
addEquality, 
dependent_set_memberEquality, 
remainderEquality, 
dependent_pairFormation, 
int_eqEquality, 
voidEquality, 
computeAll, 
divideEquality, 
applyLambdaEquality, 
unionElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbZ{}].    uiff(<a,  b>  \mdownarrow{}\mmember{}  two-factorizations(n);(1  \mleq{}  a)  \mwedge{}  (a  \mleq{}  n)  \mwedge{}  ((a  *  b)  =  n))
Date html generated:
2018_05_21-PM-09_06_14
Last ObjectModification:
2017_07_26-PM-06_28_59
Theory : general
Home
Index