Nuprl Lemma : do-apply-p-first
∀[A,B:Type]. ∀[L:(A ⟶ (B + Top)) List]. ∀[x:A].
do-apply(p-first(L);x) = do-apply(hd(filter(λf.can-apply(f;x);L));x) ∈ B supposing ↑can-apply(p-first(L);x)
Proof
Definitions occuring in Statement :
p-first: p-first(L)
,
do-apply: do-apply(f;x)
,
can-apply: can-apply(f;x)
,
hd: hd(l)
,
filter: filter(P;l)
,
list: T List
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
union: left + right
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
guard: {T}
,
or: P ∨ Q
,
cons: [a / b]
,
colength: colength(L)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
decidable: Dec(P)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
nil: []
,
it: ⋅
,
sq_type: SQType(T)
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
append: as @ bs
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
true: True
,
uiff: uiff(P;Q)
,
iff: P
⇐⇒ Q
,
bool: 𝔹
,
unit: Unit
,
btrue: tt
,
do-apply: do-apply(f;x)
,
p-first: p-first(L)
,
can-apply: can-apply(f;x)
,
isl: isl(x)
,
outl: outl(x)
,
rev_implies: P
⇐ Q
,
rev_uimplies: rev_uimplies(P;Q)
,
p-conditional: [f?g]
Lemmas referenced :
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
assert_wf,
can-apply_wf,
p-first_wf,
top_wf,
less_than_transitivity1,
less_than_irreflexivity,
equal-wf-T-base,
nat_wf,
colength_wf_list,
list-cases,
product_subtype_list,
spread_cons_lemma,
intformeq_wf,
itermAdd_wf,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
decidable__le,
intformnot_wf,
int_formula_prop_not_lemma,
le_wf,
equal_wf,
subtype_rel_list,
subtype_rel_dep_function,
subtype_rel_union,
subtract_wf,
itermSubtract_wf,
int_term_value_subtract_lemma,
subtype_base_sq,
set_subtype_base,
int_subtype_base,
decidable__equal_int,
list_wf,
p_first_nil_lemma,
filter_nil_lemma,
false_wf,
list_ind_cons_lemma,
list_ind_nil_lemma,
assert_functionality_wrt_uiff,
cons_wf,
squash_wf,
true_wf,
p-first-append,
nil_wf,
p-conditional_wf,
p-conditional-to-p-first,
p-conditional-domain,
decidable__assert,
append_wf,
filter_cons_lemma,
bool_wf,
bnot_wf,
not_wf,
eqtt_to_assert,
uiff_transitivity,
eqff_to_assert,
assert_of_bnot,
reduce_hd_cons_lemma,
list_accum_cons_lemma,
list_induction,
all_wf,
list_accum_wf,
list_accum_nil_lemma,
p-first-singleton,
iff_weakening_equal,
do-apply_wf,
outl_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
lambdaFormation,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
independent_functionElimination,
axiomEquality,
because_Cache,
applyEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
cumulativity,
unionEquality,
unionElimination,
promote_hyp,
hypothesis_subsumption,
productElimination,
applyLambdaEquality,
dependent_set_memberEquality,
addEquality,
baseClosed,
instantiate,
imageElimination,
universeEquality,
functionExtensionality,
imageMemberEquality,
equalityElimination,
inlEquality,
hyp_replacement,
inrFormation
Latex:
\mforall{}[A,B:Type]. \mforall{}[L:(A {}\mrightarrow{} (B + Top)) List]. \mforall{}[x:A].
do-apply(p-first(L);x) = do-apply(hd(filter(\mlambda{}f.can-apply(f;x);L));x)
supposing \muparrow{}can-apply(p-first(L);x)
Date html generated:
2018_05_21-PM-06_44_41
Last ObjectModification:
2017_07_26-PM-04_55_12
Theory : general
Home
Index