Nuprl Lemma : qsum-reciprocal-squares

[J:ℕ+]. 1 ≤ n < 1. (1/n n) ≤ (2 (1/J)))


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qle: r ≤ s qsub: s qdiv: (r/s) nat_plus: + uall: [x:A]. B[x] multiply: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat_plus: + implies:  Q squash: T uimplies: supposing a decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] int_seg: {i..j-} subtype_rel: A ⊆B nequal: a ≠ b ∈  guard: {T} lelt: i ≤ j < k uiff: uiff(P;Q) so_apply: x[s] true: True iff: ⇐⇒ Q rev_implies:  Q less_than: a < b less_than': less_than'(a;b) qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt eq_int: (i =z j) bfalse: ff assert: b qsub: s qadd: s qmul: s qdiv: (r/s) qinv: 1/r qle: r ≤ s grp_leq: a ≤ b infix_ap: y grp_le: b pi1: fst(t) pi2: snd(t) qadd_grp: <ℚ+> q_le: q_le(r;s) qsum: Σa ≤ j < b. E[j] rng_sum: rng_sum mon_itop: Π lb ≤ i < ub. E[i] itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y lt_int: i <j subtract: m grp_id: e add_grp_of_rng: r↓+gp rng_zero: 0 qrng: <ℚ+*> bor: p ∨bq qpositive: qpositive(r) band: p ∧b q rev_uimplies: rev_uimplies(P;Q) qge: a ≥ b
Lemmas referenced :  nat_plus_properties qle_wf sum_unroll_hi_q decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf qdiv_wf int_entire_a int_seg_properties intformeq_wf intformle_wf int_formula_prop_eq_lemma int_formula_prop_le_lemma equal-wf-base int_subtype_base int-equal-in-rationals equal-wf-T-base rationals_wf int-subtype-rationals not_wf int_seg_wf qsub_wf iff_weakening_equal add-subtract-cancel qsum_wf nat_plus_wf primrec-wf-nat-plus subtype_rel_set less_than_wf qle_witness assert-qeq qadd_wf squash_wf true_wf qle_functionality_wrt_implies qadd_functionality_wrt_qle qle_weakening_eq_qorder qmul_preserves_qle qless-int qmul_wf qadd-add qmul-mul qle-int decidable__le itermMultiply_wf int_term_value_mul_lemma qmul_over_plus_qrng qmul_over_minus_qrng qmul_comm_qrng mon_assoc_q qadd_comm_q qmul-qdiv-cancel5 qmul-qdiv-cancel qadd_ac_1_q qmul_ac_1_qrng qmul_one_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation rename extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination applyEquality lambdaEquality imageElimination because_Cache natural_numberEquality addEquality independent_isectElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll multiplyEquality productElimination equalityTransitivity equalitySymmetry baseClosed addLevel impliesFunctionality baseApply closedConclusion imageMemberEquality independent_functionElimination minusEquality universeEquality

Latex:
\mforall{}[J:\mBbbN{}\msupplus{}].  (\mSigma{}1  \mleq{}  n  <  J  +  1.  (1/n  *  n)  \mleq{}  (2  -  (1/J)))



Date html generated: 2018_05_22-AM-00_02_53
Last ObjectModification: 2017_07_26-PM-06_51_08

Theory : rationals


Home Index