Nuprl Lemma : State-loc-comb-is-loop-class-state
∀[Info,A,B:Type]. ∀[init:Id ─→ bag(B)]. ∀[f:Id ─→ A ─→ B ─→ B]. ∀[X:EClass(A)].
  (State-loc-comb(init;f;X) = loop-class-state((f o X);init) ∈ EClass(B))
Proof
Definitions occuring in Statement : 
State-loc-comb: State-loc-comb(init;f;X)
, 
loop-class-state: loop-class-state(X;init)
, 
eclass1: (f o X)
, 
eclass: EClass(A[eo; e])
, 
Id: Id
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
bag: bag(T)
Lemmas : 
State-loc-comb_wf, 
loop-class-state_wf, 
eclass1_wf, 
base_sq, 
eclass-ext, 
es-E_wf, 
event-ordering+_subtype, 
es-causl-swellfnd, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
int_seg_subtype-nat, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__equal_int, 
subtype_rel-int_seg, 
le_weakening, 
int_seg_properties, 
le_wf, 
nat_wf, 
zero-le-nat, 
lelt_wf, 
es-causl_wf, 
primed-class-opt_functionality, 
bag-size-map, 
class-ap_wf, 
bag_wf, 
null-bag-size, 
top_wf, 
subtype_rel_bag, 
eq_int_wf, 
bag-size_wf, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
eclass_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
assert-bnot, 
neg_assert_of_eq_int, 
bag-combine_wf, 
single-bag_wf, 
es-loc_wf, 
bag-combine-map, 
bag-map_wf, 
iff_weakening_equal, 
bag-combine-single-right-as-map, 
squash_wf, 
true_wf, 
eta_conv, 
decidable__lt, 
not-equal-2, 
le-add-cancel-alt, 
not-le-2, 
sq_stable__le, 
add-mul-special, 
zero-mul, 
event-ordering+_wf, 
Id_wf
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[X:EClass(A)].
    (State-loc-comb(init;f;X)  =  loop-class-state((f  o  X);init))
Date html generated:
2015_07_22-PM-00_22_59
Last ObjectModification:
2015_02_04-PM-04_39_18
Home
Index