Nuprl Lemma : State-loc-comb-is-loop-class-state

[Info,A,B:Type]. ∀[init:Id ─→ bag(B)]. ∀[f:Id ─→ A ─→ B ─→ B]. ∀[X:EClass(A)].
  (State-loc-comb(init;f;X) loop-class-state((f X);init) ∈ EClass(B))


Proof




Definitions occuring in Statement :  State-loc-comb: State-loc-comb(init;f;X) loop-class-state: loop-class-state(X;init) eclass1: (f X) eclass: EClass(A[eo; e]) Id: Id uall: [x:A]. B[x] function: x:A ─→ B[x] universe: Type equal: t ∈ T bag: bag(T)
Lemmas :  State-loc-comb_wf loop-class-state_wf eclass1_wf base_sq eclass-ext es-E_wf event-ordering+_subtype es-causl-swellfnd nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf primed-class-opt_functionality bag-size-map class-ap_wf bag_wf null-bag-size top_wf subtype_rel_bag eq_int_wf bag-size_wf subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eclass_wf eqff_to_assert equal_wf bool_cases_sqequal assert-bnot neg_assert_of_eq_int bag-combine_wf single-bag_wf es-loc_wf bag-combine-map bag-map_wf iff_weakening_equal bag-combine-single-right-as-map squash_wf true_wf eta_conv decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul event-ordering+_wf Id_wf

Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[X:EClass(A)].
    (State-loc-comb(init;f;X)  =  loop-class-state((f  o  X);init))



Date html generated: 2015_07_22-PM-00_22_59
Last ObjectModification: 2015_02_04-PM-04_39_18

Home Index