Nuprl Lemma : deliver-msg_functionality

[M:Type ─→ Type]
  ∀t:ℕ. ∀x:Id. ∀m:pMsg(P.M[P]). ∀G1,G2:LabeledDAG(pInTransit(P.M[P])). ∀Cs1,Cs2:component(P.M[P]) List.
    ((∀k:ℕ||Cs1||. let x,P Cs1[k] in let z,Q Cs2[k] in (x z ∈ Id) ∧ P≡Q)
        (system-equiv(P.M[P];deliver-msg(t;m;x;Cs1;G1);deliver-msg(t;m;x;Cs2;G2))
          ∧ (deliver-msg(t;m;x;Cs1;G1)
            deliver-msg(t;m;x;Cs2;G2)
            ∈ (Top × LabeledDAG(pInTransit(P.M[P])))))) supposing 
       ((||Cs1|| ||Cs2|| ∈ ℤand 
       (G1 G2 ∈ LabeledDAG(pInTransit(P.M[P])))) 
  supposing Continuous+(P.M[P])


Proof




Definitions occuring in Statement :  deliver-msg: deliver-msg(t;m;x;Cs;L) system-equiv: system-equiv(T.M[T];S1;S2) pInTransit: pInTransit(P.M[P]) component: component(P.M[P]) process-equiv: process-equiv pMsg: pMsg(P.M[P]) ldag: LabeledDAG(T) Id: Id select: L[n] length: ||as|| list: List strong-type-continuous: Continuous+(T.F[T]) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ─→ B[x] spread: spread def product: x:A × B[x] natural_number: $n int: universe: Type equal: t ∈ T
Lemmas :  list_induction list_wf component_wf Id_wf Process_wf sq_stable__le select_wf less_than_transitivity1 length_wf le_weakening process-equiv_wf system-equiv_wf top_wf ldag_wf pInTransit_wf list_accum_wf deliver-msg-to-comp_wf all_wf equal_wf int_seg_wf System_wf list-cases length_of_nil_lemma stuck-spread base_wf list_accum_nil_lemma product_subtype_list length_of_cons_lemma list_accum_cons_lemma non_neg_length length_wf_nat equal-wf-base-T cons_wf equal-wf-T-base length_cons select_cons_tl decidable__lt false_wf condition-implies-le minus-add minus-one-mul zero-add add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel decidable__le not-le-2 less-iff-le add-swap le-add-cancel2 iff_weakening_equal trivial-int-eq1 subtype_base_sq atom2_subtype_base eq_id_wf bool_wf eqtt_to_assert assert-eq-id eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot pMsg_wf nil_wf data_stream_nil_lemma data-stream-cons Process-apply_wf pExt_wf hd_wf listp_properties assert_of_lt_int cons_neq_nil nat_wf assert_wf lt_int_wf set_wf reduce_hd_cons_lemma tl_wf reduce_tl_cons_lemma and_wf add-cause_wf lg-append_wf_dag decidable__equal_int int_subtype_base not-equal-2 minus-zero le_antisymmetry_iff subtract_wf minus-minus lelt_wf subtype_rel_list cons_one_one Process-stream_wf squash_wf true_wf pi1_wf_top subtype_rel_product subtype_top pi2_wf ge_wf cons_wf_listp

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}t:\mBbbN{}.  \mforall{}x:Id.  \mforall{}m:pMsg(P.M[P]).  \mforall{}G1,G2:LabeledDAG(pInTransit(P.M[P])).
    \mforall{}Cs1,Cs2:component(P.M[P])  List.
        ((\mforall{}k:\mBbbN{}||Cs1||.  let  x,P  =  Cs1[k]  in  let  z,Q  =  Cs2[k]  in  (x  =  z)  \mwedge{}  P\mequiv{}Q)
              {}\mRightarrow{}  (system-equiv(P.M[P];deliver-msg(t;m;x;Cs1;G1);deliver-msg(t;m;x;Cs2;G2))
                    \mwedge{}  (deliver-msg(t;m;x;Cs1;G1)  =  deliver-msg(t;m;x;Cs2;G2))))  supposing 
              ((||Cs1||  =  ||Cs2||)  and 
              (G1  =  G2)) 
    supposing  Continuous+(P.M[P])



Date html generated: 2015_07_23-AM-11_08_51
Last ObjectModification: 2015_02_04-PM-04_51_34

Home Index