Nuprl Lemma : MMTree-rank_wf
∀T:Type. ∀t:MMTree(T). (MMTree-rank(t) ∈ ℕ)
Proof
Definitions occuring in Statement :
MMTree-rank: MMTree-rank(t)
,
MMTree: MMTree(T)
,
nat: ℕ
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
universe: Type
Lemmas :
nat_properties,
less_than_transitivity1,
less_than_irreflexivity,
ge_wf,
less_than_wf,
le_wf,
MMTree_size_wf,
int_seg_wf,
decidable__le,
subtract_wf,
false_wf,
not-ge-2,
less-iff-le,
condition-implies-le,
minus-one-mul,
zero-add,
minus-add,
minus-minus,
add-associates,
add-swap,
add-commutes,
add_functionality_wrt_le,
add-zero,
le-add-cancel,
decidable__equal_int,
subtype_rel-int_seg,
le_weakening,
int_seg_properties,
MMTree-ext,
eq_atom_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_atom,
subtype_base_sq,
atom_subtype_base,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_atom,
sum-nat,
length_wf_nat,
list_wf,
sum_wf,
select_wf,
sq_stable__le,
length_wf,
non_neg_sum,
zero-le-nat,
decidable__lt,
sum-nat-less,
sum-nat-le,
subtract-is-less,
lelt_wf,
not-equal-2,
le-add-cancel-alt,
not-le-2,
add-mul-special,
zero-mul,
nat_wf,
MMTree_wf,
list-subtype,
l_member_wf,
imax-list-is-nat,
map_wf,
imax-list_wf,
cons_wf,
length_of_cons_lemma,
map-length,
non_neg_length,
squash_wf,
and_wf
\mforall{}T:Type. \mforall{}t:MMTree(T). (MMTree-rank(t) \mmember{} \mBbbN{})
Date html generated:
2015_07_17-AM-07_47_23
Last ObjectModification:
2015_01_27-AM-09_40_02
Home
Index