Nuprl Lemma : nc-0-s-0

[I:fset(ℕ)]. ∀[i,j:ℕ].  ((i0) ⋅ s ⋅ (i0) s ⋅ (i0) ∈ I+j ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-0: (i0) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names-hom: I ⟶ J nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) nc-s: s nc-0: (i0) squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q names: names(I) nat: all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False top: Top DeMorgan-algebra: DeMorganAlgebra empty-fset: {} nil: [] dM0: 0 lattice-0: 0 record-select: r.x free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] eq_atom: =a y free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) not: ¬A nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) lattice-hom: Hom(l1;l2) bounded-lattice-hom: Hom(l1;l2) dma-hom: dma-hom(dma1;dma2)
Lemmas referenced :  nc-0_wf add-name_wf equal_wf squash_wf true_wf istype-universe names-hom_wf add-name-com subtype_rel_self iff_weakening_equal names_wf istype-nat eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert set_subtype_base le_wf istype-int int_subtype_base nat_wf fset-member_wf int-deq_wf bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot neg_assert_of_eq_int not-added-name dM0-sq-empty istype-void lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift_wf2 nc-s_wf f-subset-add-name1 f-subset-add-name names-subtype dM-lift-0 dM-lift-inc dM0_wf eq_int_eq_true btrue_wf strong-subtype-deq-subtype strong-subtype-set3 strong-subtype-self bfalse_wf bnot_wf assert_elim btrue_neq_bfalse nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf dM_inc_wf all_wf dma-hom_wf dM-lift_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality instantiate lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType inhabitedIsType universeEquality because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination hyp_replacement isect_memberEquality_alt axiomEquality isectIsTypeImplies setElimination rename lambdaFormation_alt unionElimination equalityElimination dependent_pairFormation_alt equalityIsType4 baseApply closedConclusion intEquality promote_hyp dependent_functionElimination cumulativity voidElimination equalityIsType1 productEquality functionEquality dependent_set_memberEquality_alt independent_pairFormation productIsType applyLambdaEquality approximateComputation int_eqEquality setEquality lambdaEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i,j:\mBbbN{}].    ((i0)  \mcdot{}  s  \mcdot{}  (i0)  =  s  \mcdot{}  (i0))



Date html generated: 2019_11_04-PM-05_32_07
Last ObjectModification: 2018_11_08-AM-11_03_58

Theory : cubical!type!theory


Home Index