Nuprl Lemma : rmaximum_functionality

[n,m:ℤ].
  ∀[x,y:{n..m 1-} ⟶ ℝ].
    rmaximum(n;m;k.x[k]) rmaximum(n;m;k.y[k]) supposing ∀k:ℤ((n ≤ k)  (k ≤ m)  (x[k] y[k])) 
  supposing n ≤ m


Proof




Definitions occuring in Statement :  rmaximum: rmaximum(n;m;k.x[k]) req: y real: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  true: True less_than': less_than'(a;b) subtract: m rev_implies:  Q iff: ⇐⇒ Q le: A ≤ B bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) subtype_rel: A ⊆B btrue: tt it: unit: Unit bool: 𝔹 so_lambda: λ2x.t[x] lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s] sq_type: SQType(T) ge: i ≥  guard: {T} prop: and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A or: P ∨ Q decidable: Dec(P) all: x:A. B[x] nat: rmaximum: rmaximum(n;m;k.x[k]) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  subtract-add-cancel rmax_functionality subtype_rel_self le-add-cancel add-commutes add-zero zero-add zero-mul add-mul-special minus-one-mul-top add-swap minus-one-mul minus-add add-associates condition-implies-le not-le-2 false_wf le_reflexive int_seg_subtype subtype_rel_function primrec-unroll assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff eqff_to_assert bnot_wf le_int_wf assert_of_lt_int eqtt_to_assert assert_wf equal-wf-base uiff_transitivity bool_wf lt_int_wf rmaximum_wf equal_wf decidable__lt primrec0_lemma req_wf all_wf int_seg_properties rmax_wf lelt_wf int_seg_wf real_wf primrec_wf req_witness less_than_wf ge_wf int_formula_prop_less_lemma intformless_wf int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf decidable__equal_int nat_properties int_subtype_base subtype_base_sq nat_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat subtract_wf decidable__le
Rules used in proof :  multiplyEquality minusEquality baseClosed closedConclusion baseApply equalityElimination functionEquality productElimination addEquality functionExtensionality applyEquality intWeakElimination rename setElimination applyLambdaEquality equalitySymmetry equalityTransitivity cumulativity instantiate lambdaFormation independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination unionElimination hypothesis hypothesisEquality isectElimination natural_numberEquality dependent_functionElimination sqequalHypSubstitution extract_by_obid because_Cache dependent_set_memberEquality sqequalRule thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n,m:\mBbbZ{}].
    \mforall{}[x,y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
        rmaximum(n;m;k.x[k])  =  rmaximum(n;m;k.y[k]) 
        supposing  \mforall{}k:\mBbbZ{}.  ((n  \mleq{}  k)  {}\mRightarrow{}  (k  \mleq{}  m)  {}\mRightarrow{}  (x[k]  =  y[k])) 
    supposing  n  \mleq{}  m



Date html generated: 2018_05_22-PM-01_56_46
Last ObjectModification: 2018_05_21-AM-00_12_03

Theory : reals


Home Index