Nuprl Lemma : pcw-pp-lemma
∀P:Type. ∀A:P ⟶ Type. ∀B:p:P ⟶ A[p] ⟶ Type. ∀C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P. ∀par:P. ∀w:pW par. ∀n:ℕ. ∀m:ℕn.
∀ss:ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]).
  ((∀x:ℕn. (param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;w) x ss (ss x)))
  
⇒ (fst(snd((ss m))) ∈ pW (fst((ss m)))))
Proof
Definitions occuring in Statement : 
param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w)
, 
param-W: pW
, 
pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b])
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
sq_stable: SqStable(P)
, 
spreadn: spread3, 
pcw-step-agree: StepAgree(s;p1;w)
, 
pcw-steprel: StepRel(s1;s2)
, 
squash: ↓T
, 
less_than: a < b
, 
param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w)
, 
true: True
, 
top: Top
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b])
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
le: A ≤ B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
bfalse: ff
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
isl: isl(x)
, 
ext-eq: A ≡ B
, 
ext-family: F ≡ G
, 
cand: A c∧ B
, 
param-W: pW
, 
pcw-path: Path
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
nat_wf, 
subtype_rel_self, 
le_weakening2, 
sq_stable__le, 
top_wf, 
decidable__lt, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-ge-2, 
subtract_wf, 
decidable__le, 
int_seg_subtype, 
subtype_rel_dep_function, 
false_wf, 
int_seg_subtype_nat, 
equal_wf, 
param-W_wf, 
subtype_rel-equal, 
pcw-step_wf, 
param-W-rel_wf, 
int_seg_wf, 
all_wf, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties, 
le-add-cancel2, 
zero-mul, 
add-mul-special, 
lelt_wf, 
le-add-cancel-alt, 
not-lt-2, 
not-le-2, 
param-W-ext, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
param-co-W_wf, 
param-co-W-ext, 
equal_functionality_wrt_subtype_rel2, 
equal-implies-member-param-W, 
subtype_rel_wf, 
pcw-step-agree_wf, 
istype-void, 
istype-le, 
pcw-path_wf, 
pcw-pp-barred_wf, 
pcw-partial_wf, 
istype-universe, 
exists_wf, 
le_wf, 
le_reflexive
Rules used in proof : 
universeEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
axiomSqEquality, 
isect_memberFormation, 
lessCases, 
minusEquality, 
intEquality, 
voidEquality, 
isect_memberEquality, 
addEquality, 
unionElimination, 
independent_pairFormation, 
functionEquality, 
because_Cache, 
functionExtensionality, 
cumulativity, 
applyEquality, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
dependent_functionElimination, 
lambdaEquality, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
intWeakElimination, 
sqequalRule, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
multiplyEquality, 
dependent_set_memberEquality, 
instantiate, 
productEquality, 
hypothesis_subsumption, 
comment, 
applyLambdaEquality, 
hyp_replacement, 
Error :dependent_set_memberEquality_alt, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
Error :lambdaEquality_alt, 
Error :inhabitedIsType, 
Error :functionIsType, 
levelHypothesis, 
addLevel
Latex:
\mforall{}P:Type.  \mforall{}A:P  {}\mrightarrow{}  Type.  \mforall{}B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type.  \mforall{}C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P.  \mforall{}par:P.  \mforall{}w:pW  par.
\mforall{}n:\mBbbN{}.  \mforall{}m:\mBbbN{}n.  \mforall{}ss:\mBbbN{}n  {}\mrightarrow{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]).
    ((\mforall{}x:\mBbbN{}n.  (param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;w)  x  ss  (ss  x)))
    {}\mRightarrow{}  (fst(snd((ss  m)))  \mmember{}  pW  (fst((ss  m)))))
Date html generated:
2019_06_20-PM-00_36_03
Last ObjectModification:
2019_04_15-PM-10_32_59
Theory : co-recursion
Home
Index