Nuprl Lemma : pcw-pp-lemma

P:Type. ∀A:P ⟶ Type. ∀B:p:P ⟶ A[p] ⟶ Type. ∀C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P. ∀par:P. ∀w:pW par. ∀n:ℕ. ∀m:ℕn.
ss:ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]).
  ((∀x:ℕn. (param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;w) ss (ss x)))
   (fst(snd((ss m))) ∈ pW (fst((ss m)))))


Proof




Definitions occuring in Statement :  param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w) param-W: pW pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) int_seg: {i..j-} nat: so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] pi1: fst(t) pi2: snd(t) all: x:A. B[x] implies:  Q member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  sq_stable: SqStable(P) spreadn: spread3 pcw-step-agree: StepAgree(s;p1;w) pcw-steprel: StepRel(s1;s2) squash: T less_than: a < b param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w) true: True top: Top subtract: m uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) not: ¬A less_than': less_than'(a;b) lelt: i ≤ j < k int_seg: {i..j-} pi2: snd(t) pi1: fst(t) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) subtype_rel: A ⊆B so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q le: A ≤ B prop: uimplies: supposing a guard: {T} ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] bfalse: ff btrue: tt ifthenelse: if then else fi  assert: b isl: isl(x) ext-eq: A ≡ B ext-family: F ≡ G cand: c∧ B param-W: pW pcw-path: Path exists: x:A. B[x]
Lemmas referenced :  nat_wf subtype_rel_self le_weakening2 sq_stable__le top_wf decidable__lt le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 subtract_wf decidable__le int_seg_subtype subtype_rel_dep_function false_wf int_seg_subtype_nat equal_wf param-W_wf subtype_rel-equal pcw-step_wf param-W-rel_wf int_seg_wf all_wf less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties le-add-cancel2 zero-mul add-mul-special lelt_wf le-add-cancel-alt not-lt-2 not-le-2 param-W-ext iff_weakening_equal squash_wf true_wf param-co-W_wf param-co-W-ext equal_functionality_wrt_subtype_rel2 equal-implies-member-param-W subtype_rel_wf pcw-step-agree_wf istype-void istype-le pcw-path_wf pcw-pp-barred_wf pcw-partial_wf istype-universe exists_wf le_wf le_reflexive
Rules used in proof :  universeEquality imageElimination baseClosed imageMemberEquality axiomSqEquality isect_memberFormation lessCases minusEquality intEquality voidEquality isect_memberEquality addEquality unionElimination independent_pairFormation functionEquality because_Cache functionExtensionality cumulativity applyEquality productElimination equalitySymmetry equalityTransitivity axiomEquality dependent_functionElimination lambdaEquality voidElimination independent_functionElimination independent_isectElimination natural_numberEquality intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution multiplyEquality dependent_set_memberEquality instantiate productEquality hypothesis_subsumption comment applyLambdaEquality hyp_replacement Error :dependent_set_memberEquality_alt,  Error :lambdaFormation_alt,  Error :universeIsType,  Error :lambdaEquality_alt,  Error :inhabitedIsType,  Error :functionIsType,  levelHypothesis addLevel

Latex:
\mforall{}P:Type.  \mforall{}A:P  {}\mrightarrow{}  Type.  \mforall{}B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type.  \mforall{}C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P.  \mforall{}par:P.  \mforall{}w:pW  par.
\mforall{}n:\mBbbN{}.  \mforall{}m:\mBbbN{}n.  \mforall{}ss:\mBbbN{}n  {}\mrightarrow{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]).
    ((\mforall{}x:\mBbbN{}n.  (param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;w)  x  ss  (ss  x)))
    {}\mRightarrow{}  (fst(snd((ss  m)))  \mmember{}  pW  (fst((ss  m)))))



Date html generated: 2019_06_20-PM-00_36_03
Last ObjectModification: 2019_04_15-PM-10_32_59

Theory : co-recursion


Home Index