Nuprl Lemma : strat2play-invariant-type

g:SimpleGame. ∀n:ℕ. ∀s:win2strat(g;n). ∀moves:strat2play(g;n;s).
  (∀i:ℕ1
     ((↓Legal1(moves[2 i];moves[(2 i) 1]))
     ∧ (i < n
        ((↓Legal2(moves[(2 i) 1];moves[2 (i 1)]))
          ∧ (moves[2 (i 1)] (s play-truncate(moves;2 (i 1))) ∈ Pos(g))))) ∈ ℙ)


Proof




Definitions occuring in Statement :  strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) play-truncate: play-truncate(f;m) play-item: moves[i] sg-legal2: Legal2(x;y) sg-legal1: Legal1(x;y) sg-pos: Pos(g) simple-game: SimpleGame int_seg: {i..j-} nat: less_than: a < b prop: all: x:A. B[x] squash: T implies:  Q and: P ∧ Q member: t ∈ T apply: a multiply: m add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  pi1: fst(t) seq-len: ||s|| seq-truncate: seq-truncate(s;n) play-len: ||moves|| play-truncate: play-truncate(f;m) sequence: sequence(T) less_than: a < b so_apply: x[s] nat_plus: + true: True top: Top subtract: m uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) squash: T sq_stable: SqStable(P) guard: {T} uimplies: supposing a subtype_rel: A ⊆B implies:  Q not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} and: P ∧ Q prop: so_lambda: λ2x.t[x] nat: uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  seq-len_wf sequence_wf set_wf strat2play_subtype truncate-strat2play add-subtract-cancel nat_properties int_seg_properties minus-zero le-add-cancel-alt mul-swap omega-shadow two-mul add-mul-special one-mul le_reflexive simple-game_wf win2strat_wf mul-commutes mul-distributes zero-mul mul-distributes-right mul-associates le_weakening2 play-len_wf minus-minus subtract_wf strat2play_wf le-add-cancel2 less-iff-le win2strat_subtype not-lt-2 decidable__lt win2strat-properties sg-pos_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le not-le-2 decidable__le sg-legal2_wf less_than_wf equal_wf sq_stable__le nat_wf multiply_nat_wf add_nat_wf lelt_wf int_seg_subtype_nat le_wf false_wf mul_bounds_1a play-item_wf sg-legal1_wf squash_wf int_seg_wf all_wf
Rules used in proof :  setEquality functionExtensionality minusEquality intEquality voidEquality isect_memberEquality voidElimination unionElimination functionEquality dependent_functionElimination equalitySymmetry equalityTransitivity imageElimination baseClosed imageMemberEquality productElimination independent_functionElimination independent_isectElimination applyEquality independent_pairFormation multiplyEquality dependent_set_memberEquality hypothesisEquality productEquality lambdaEquality sqequalRule hypothesis because_Cache rename setElimination addEquality natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:SimpleGame.  \mforall{}n:\mBbbN{}.  \mforall{}s:win2strat(g;n).  \mforall{}moves:strat2play(g;n;s).
    (\mforall{}i:\mBbbN{}n  +  1
          ((\mdownarrow{}Legal1(moves[2  *  i];moves[(2  *  i)  +  1]))
          \mwedge{}  (i  <  n
              {}\mRightarrow{}  ((\mdownarrow{}Legal2(moves[(2  *  i)  +  1];moves[2  *  (i  +  1)]))
                    \mwedge{}  (moves[2  *  (i  +  1)]  =  (s  play-truncate(moves;2  *  (i  +  1)))))))  \mmember{}  \mBbbP{})



Date html generated: 2018_07_25-PM-01_33_05
Last ObjectModification: 2018_06_20-PM-09_29_37

Theory : co-recursion


Home Index