Nuprl Lemma : permutation-generators

n:ℕ
  ∀[P:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)}  ⟶ ℙ]
    (P[λx.x]
     ∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} (P[f]  P[(0, 1) f]) supposing 1 < n
     (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} (P[f]  P[rot(n) f]))
     (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} P[f]))


Proof




Definitions occuring in Statement :  flip: (i, j) rotate: rot(n) inject: Inj(A;B;f) compose: g int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: nat: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top sq_type: SQType(T) guard: {T} squash: T compose: g bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) nequal: a ≠ b ∈  int_upper: {i...} bfalse: ff bnot: ¬bb assert: b true: True iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) compose-flips: compose-flips(flips) label: ...$L... t
Lemmas referenced :  set_wf int_seg_wf inject_wf all_wf compose-injections rotate-injection rotate_wf isect_wf less_than_wf flip-injection false_wf nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf lelt_wf flip_wf identity-injection nat_wf decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties intformeq_wf intformle_wf int_formula_prop_eq_lemma int_formula_prop_le_lemma singleton_int_seg decidable__le itermAdd_wf int_term_value_add_lemma zero-add flip-generators list_induction bool_wf reduce_wf compose_wf eqtt_to_assert int_upper_subtype_nat le_wf nequal-le-implies eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot int_upper_properties list_wf reduce_nil_lemma reduce_cons_lemma inject-compose squash_wf true_wf comp_assoc iff_weakening_equal sq_stable__inject cycle-as-flips no_repeats_wf cycle-injection map_wf map_nil_lemma map_cons_lemma cycle-decomp cycle_wf l_all_wf l_member_wf length_wf l_all_wf_nil and_wf nil_wf l_all_cons injection-if-compose-injection cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality natural_numberEquality setElimination rename hypothesisEquality hypothesis because_Cache sqequalRule lambdaEquality functionExtensionality applyEquality setEquality dependent_set_memberEquality universeEquality independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll cumulativity instantiate independent_functionElimination equalityTransitivity equalitySymmetry productElimination addLevel hyp_replacement levelHypothesis applyLambdaEquality imageMemberEquality baseClosed imageElimination addEquality equalityElimination hypothesis_subsumption promote_hyp comment productEquality spreadEquality independent_pairEquality

Latex:
\mforall{}n:\mBbbN{}
    \mforall{}[P:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}    {}\mrightarrow{}  \mBbbP{}]
        (P[\mlambda{}x.x]
        {}\mRightarrow{}  \mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .  (P[f]  {}\mRightarrow{}  P[(0,  1)  o  f])  supposing  1  <  n
        {}\mRightarrow{}  (\mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .  (P[f]  {}\mRightarrow{}  P[rot(n)  o  f]))
        {}\mRightarrow{}  (\mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .  P[f]))



Date html generated: 2017_04_17-AM-08_21_47
Last ObjectModification: 2017_02_27-PM-04_47_11

Theory : list_1


Home Index