Nuprl Lemma : rotate-as-flips

n:ℕ. ∃flips:(ℕn × ℕn) List. (rot(n) compose-flips(flips) ∈ (ℕn ⟶ ℕn))


Proof




Definitions occuring in Statement :  compose-flips: compose-flips(flips) rotate: rot(n) list: List int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) nat: so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x] less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B lelt: i ≤ j < k int_seg: {i..j-} guard: {T} subtract: m nequal: a ≠ b ∈  assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 sq_type: SQType(T) compose: g rotate: rot(n) flip: (i, j) true: True squash: T less_than: a < b eq_int: (i =z j) compose-flips: compose-flips(flips) nil: [] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] colength: colength(L) cons: [a b] ge: i ≥  so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs
Lemmas referenced :  nat_wf rotate_wf equal_wf primrec-wf2 less_than_wf set_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le compose-flips_wf equal-wf-base-T subtract_wf int_seg_wf list_wf exists_wf false_wf lelt_wf decidable__equal_int int_seg_properties nil_wf decidable__lt add-member-int_seg2 int_term_value_add_lemma itermAdd_wf neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf int_formula_prop_eq_lemma intformeq_wf int_subtype_base subtype_base_sq int_seg_cases int_seg_subtype reduce_nil_lemma map_nil_lemma cons_wf subtype_rel_product subtype_rel_list append_wf set_subtype_base spread_cons_lemma product_subtype_list list-cases less_than_irreflexivity less_than_transitivity1 colength_wf_list equal-wf-T-base ge_wf nat_properties reduce_cons_lemma map_cons_lemma list_ind_nil_lemma list_ind_cons_lemma ifthenelse_wf nequal_wf
Rules used in proof :  functionEquality independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_set_memberEquality dependent_functionElimination lambdaEquality sqequalRule because_Cache hypothesis hypothesisEquality natural_numberEquality productEquality isectElimination sqequalHypSubstitution extract_by_obid introduction setElimination rename thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution baseClosed applyEquality productElimination functionExtensionality addEquality promote_hyp equalityElimination equalitySymmetry equalityTransitivity cumulativity instantiate hypothesis_subsumption imageMemberEquality independent_pairEquality imageElimination applyLambdaEquality axiomEquality intWeakElimination

Latex:
\mforall{}n:\mBbbN{}.  \mexists{}flips:(\mBbbN{}n  \mtimes{}  \mBbbN{}n)  List.  (rot(n)  =  compose-flips(flips))



Date html generated: 2018_05_21-PM-00_42_23
Last ObjectModification: 2017_12_10-PM-03_29_29

Theory : list_1


Home Index