Nuprl Lemma : rotate-as-flips
∀n:ℕ. ∃flips:(ℕn × ℕn) List. (rot(n) = compose-flips(flips) ∈ (ℕn ⟶ ℕn))
Proof
Definitions occuring in Statement : 
compose-flips: compose-flips(flips)
, 
rotate: rot(n)
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
and: P ∧ Q
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
guard: {T}
, 
subtract: n - m
, 
nequal: a ≠ b ∈ T 
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
sq_type: SQType(T)
, 
compose: f o g
, 
rotate: rot(n)
, 
flip: (i, j)
, 
true: True
, 
squash: ↓T
, 
less_than: a < b
, 
eq_int: (i =z j)
, 
compose-flips: compose-flips(flips)
, 
nil: []
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
colength: colength(L)
, 
cons: [a / b]
, 
ge: i ≥ j 
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
append: as @ bs
Lemmas referenced : 
nat_wf, 
rotate_wf, 
equal_wf, 
primrec-wf2, 
less_than_wf, 
set_wf, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
compose-flips_wf, 
equal-wf-base-T, 
subtract_wf, 
int_seg_wf, 
list_wf, 
exists_wf, 
false_wf, 
lelt_wf, 
decidable__equal_int, 
int_seg_properties, 
nil_wf, 
decidable__lt, 
add-member-int_seg2, 
int_term_value_add_lemma, 
itermAdd_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int_subtype_base, 
subtype_base_sq, 
int_seg_cases, 
int_seg_subtype, 
reduce_nil_lemma, 
map_nil_lemma, 
cons_wf, 
subtype_rel_product, 
subtype_rel_list, 
append_wf, 
set_subtype_base, 
spread_cons_lemma, 
product_subtype_list, 
list-cases, 
less_than_irreflexivity, 
less_than_transitivity1, 
colength_wf_list, 
equal-wf-T-base, 
ge_wf, 
nat_properties, 
reduce_cons_lemma, 
map_cons_lemma, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
ifthenelse_wf, 
nequal_wf
Rules used in proof : 
functionEquality, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
dependent_set_memberEquality, 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
productEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
setElimination, 
rename, 
thin, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
baseClosed, 
applyEquality, 
productElimination, 
functionExtensionality, 
addEquality, 
promote_hyp, 
equalityElimination, 
equalitySymmetry, 
equalityTransitivity, 
cumulativity, 
instantiate, 
hypothesis_subsumption, 
imageMemberEquality, 
independent_pairEquality, 
imageElimination, 
applyLambdaEquality, 
axiomEquality, 
intWeakElimination
Latex:
\mforall{}n:\mBbbN{}.  \mexists{}flips:(\mBbbN{}n  \mtimes{}  \mBbbN{}n)  List.  (rot(n)  =  compose-flips(flips))
Date html generated:
2018_05_21-PM-00_42_23
Last ObjectModification:
2017_12_10-PM-03_29_29
Theory : list_1
Home
Index