Nuprl Lemma : integer-sqrt-xover

x:ℕ(∃r:ℕ [(((r r) ≤ x) ∧ x < (r 1) (r 1))])


Proof




Definitions occuring in Statement :  nat: less_than: a < b le: A ≤ B all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q multiply: m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: int_upper: {i...} uimplies: supposing a and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q implies:  Q false: False ge: i ≥  exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top prop: rev_implies:  Q uiff: uiff(P;Q) assert: b ifthenelse: if then else fi  bfalse: ff subtype_rel: A ⊆B so_lambda: λ2x.t[x] int_seg: {i..j-} so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) true: True nat_plus: + decidable: Dec(P) or: P ∨ Q btrue: tt sq_type: SQType(T) guard: {T} lt_int: i <j lelt: i ≤ j < k less_than: a < b sq_exists: x:A [B[x]] squash: T sq_stable: SqStable(P)
Lemmas referenced :  nat_wf exact-xover_wf lt_int_wf int_upper_wf iff_imp_equal_bool nat_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf less_than_wf false_wf assert_of_lt_int assert_wf iff_wf exists_wf all_wf int_seg_wf equal-wf-T-base bool_wf subtract_wf set_wf primrec-wf2 le_wf btrue_wf mul_bounds_1b decidable__lt not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel true_wf decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties bfalse_wf int_seg_subtype int_seg_cases eqff_to_assert eqtt_to_assert bnot_wf not_wf iff_transitivity iff_weakening_uiff assert_of_bnot int_upper_properties itermMultiply_wf intformnot_wf itermSubtract_wf int_term_value_mul_lemma int_formula_prop_not_lemma int_term_value_subtract_lemma mul_bounds_1a decidable__le itermAdd_wf int_term_value_add_lemma intformeq_wf int_formula_prop_eq_lemma lelt_wf mul-distributes mul-distributes-right add-associates mul-commutes one-mul add-swap two-mul sq_stable__and sq_stable__le sq_stable__equal squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction cut extract_by_obid hypothesis sqequalRule sqequalHypSubstitution isectElimination thin natural_numberEquality lambdaEquality setElimination rename because_Cache multiplyEquality independent_isectElimination independent_pairFormation hypothesisEquality productElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality computeAll addLevel impliesFunctionality applyEquality productEquality baseClosed dependent_set_memberEquality unionElimination independent_functionElimination instantiate cumulativity equalityTransitivity equalitySymmetry hypothesis_subsumption addEquality allFunctionality levelHypothesis promote_hyp andLevelFunctionality allLevelFunctionality existsFunctionality setEquality applyLambdaEquality imageMemberEquality imageElimination independent_pairEquality axiomEquality

Latex:
\mforall{}x:\mBbbN{}.  (\mexists{}r:\mBbbN{}  [(((r  *  r)  \mleq{}  x)  \mwedge{}  x  <  (r  +  1)  *  (r  +  1))])



Date html generated: 2019_06_20-PM-02_35_38
Last ObjectModification: 2019_06_12-PM-00_24_52

Theory : num_thy_1


Home Index