Nuprl Lemma : integer-sqrt-xover
∀x:ℕ. (∃r:ℕ [(((r * r) ≤ x) ∧ x < (r + 1) * (r + 1))])
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
less_than: a < b
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
int_upper: {i...}
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
btrue: tt
, 
sq_type: SQType(T)
, 
guard: {T}
, 
lt_int: i <z j
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
sq_exists: ∃x:A [B[x]]
, 
squash: ↓T
, 
sq_stable: SqStable(P)
Lemmas referenced : 
nat_wf, 
exact-xover_wf, 
lt_int_wf, 
int_upper_wf, 
iff_imp_equal_bool, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
less_than_wf, 
false_wf, 
assert_of_lt_int, 
assert_wf, 
iff_wf, 
exists_wf, 
all_wf, 
int_seg_wf, 
equal-wf-T-base, 
bool_wf, 
subtract_wf, 
set_wf, 
primrec-wf2, 
le_wf, 
btrue_wf, 
mul_bounds_1b, 
decidable__lt, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
true_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
bfalse_wf, 
int_seg_subtype, 
int_seg_cases, 
eqff_to_assert, 
eqtt_to_assert, 
bnot_wf, 
not_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
int_upper_properties, 
itermMultiply_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_term_value_mul_lemma, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
mul_bounds_1a, 
decidable__le, 
itermAdd_wf, 
int_term_value_add_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
lelt_wf, 
mul-distributes, 
mul-distributes-right, 
add-associates, 
mul-commutes, 
one-mul, 
add-swap, 
two-mul, 
sq_stable__and, 
sq_stable__le, 
sq_stable__equal, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
cut, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
multiplyEquality, 
independent_isectElimination, 
independent_pairFormation, 
hypothesisEquality, 
productElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
addLevel, 
impliesFunctionality, 
applyEquality, 
productEquality, 
baseClosed, 
dependent_set_memberEquality, 
unionElimination, 
independent_functionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis_subsumption, 
addEquality, 
allFunctionality, 
levelHypothesis, 
promote_hyp, 
andLevelFunctionality, 
allLevelFunctionality, 
existsFunctionality, 
setEquality, 
applyLambdaEquality, 
imageMemberEquality, 
imageElimination, 
independent_pairEquality, 
axiomEquality
Latex:
\mforall{}x:\mBbbN{}.  (\mexists{}r:\mBbbN{}  [(((r  *  r)  \mleq{}  x)  \mwedge{}  x  <  (r  +  1)  *  (r  +  1))])
Date html generated:
2019_06_20-PM-02_35_38
Last ObjectModification:
2019_06_12-PM-00_24_52
Theory : num_thy_1
Home
Index