Nuprl Lemma : mul-ipoly-equiv

[p,q:iMonomial() List].  ipolynomial-term(mul-ipoly(p;q)) ≡ ipolynomial-term(p) (*) ipolynomial-term(q)


Proof




Definitions occuring in Statement :  mul-ipoly: mul-ipoly(p;q) ipolynomial-term: ipolynomial-term(p) iMonomial: iMonomial() equiv_int_terms: t1 ≡ t2 itermMultiply: left (*) right list: List uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] or: P ∨ Q mul-ipoly: mul-ipoly(p;q) uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) ifthenelse: if then else fi  btrue: tt cons: [a b] iMonomial: iMonomial() so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q int_nzero: -o top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bfalse: ff equiv_int_terms: t1 ≡ t2 itermMultiply: left (*) right int_term_ind: int_term_ind itermConstant: "const" int_term_value: int_term_value(f;t) ipolynomial-term: ipolynomial-term(p) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q) itermAdd: left (+) right
Lemmas referenced :  iMonomial_wf list-cases valueall-type-has-valueall list_wf list-valueall-type void-valueall-type nil_wf evalall-reduce null_nil_lemma product_subtype_list product-valueall-type int_nzero_wf sorted_wf subtype_rel_self set-valueall-type nequal_wf int-valueall-type cons_wf null_cons_lemma spread_cons_lemma ipolynomial-term_wf int_term_value_wf zero-mul null_wf bool_wf eqtt_to_assert assert_of_null eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base btrue_neq_bfalse bfalse_wf and_wf btrue_wf itermAdd_wf imonomial-term_wf subtype_rel_product subtype_rel_list int_term_wf list_accum_wf mul-commutes eager-accum_wf mul-mono-poly_wf1 add-ipoly_wf1 itermMultiply_wf equiv_int_terms_functionality equiv_int_terms_weakening itermMultiply_functionality ipolynomial-term-cons mul-distributes-right list_accum_cons_lemma list_accum_nil_lemma equiv_int_terms_wf all_wf list_induction add-zero mul-mono-poly-equiv add-ipoly-equiv itermAdd_functionality equiv_int_terms_transitivity add-associates eager-accum-list_accum
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality unionElimination sqequalRule voidEquality independent_isectElimination callbyvalueReduce promote_hyp hypothesis_subsumption productElimination lambdaEquality setEquality intEquality because_Cache independent_functionElimination natural_numberEquality lambdaFormation isect_memberEquality voidElimination axiomEquality functionEquality equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation instantiate cumulativity baseClosed applyLambdaEquality independent_pairFormation dependent_set_memberEquality rename setElimination applyEquality productEquality independent_pairEquality multiplyEquality addEquality

Latex:
\mforall{}[p,q:iMonomial()  List].
    ipolynomial-term(mul-ipoly(p;q))  \mequiv{}  ipolynomial-term(p)  (*)  ipolynomial-term(q)



Date html generated: 2017_09_29-PM-05_53_40
Last ObjectModification: 2017_07_26-PM-01_42_53

Theory : omega


Home Index