Nuprl Lemma : add-plus-1-div-2-implies-lt

[n,m:ℕ].  n < supposing n < ((n m) 1) ÷ 2


Proof




Definitions occuring in Statement :  nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] divide: n ÷ m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: ge: i ≥  all: x:A. B[x] true: True nequal: a ≠ b ∈  not: ¬A implies:  Q sq_type: SQType(T) guard: {T} false: False prop: decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top int_nzero: -o uiff: uiff(P;Q) nat_plus: + less_than': less_than'(a;b) subtype_rel: A ⊆B le: A ≤ B iff: ⇐⇒ Q subtract: m isOdd: isOdd(n) rev_uimplies: rev_uimplies(P;Q) ifthenelse: if then else fi  btrue: tt rev_implies:  Q bfalse: ff
Lemmas referenced :  nat_properties decidable__lt subtype_base_sq int_subtype_base equal-wf-base true_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermMultiply_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_mul_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf div_rem_sum nequal_wf decidable__equal_int add-is-int-iff intformeq_wf itermSubtract_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_add_lemma false_wf less_than_wf subtract_wf subtract-is-int-iff rem_bounds_1 decidable__le intformle_wf int_formula_prop_le_lemma le_wf decidable__or intformor_wf int_formula_prop_or_lemma rem_add1 iff_weakening_equal member-less_than nat_wf eq_int_wf add-zero assert_of_eq_int modulus_wf_int_mod int-subtype-int_mod modulus-is-rem assert_wf bnot_wf not_wf equal-wf-T-base bool_cases bool_wf bool_subtype_base eqtt_to_assert eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot isOdd-add not-same-parity-implies-even-odd even-iff-not-odd not_assert_elim isOdd_wf and_wf equal_wf assert_elim btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename dependent_functionElimination multiplyEquality natural_numberEquality divideEquality addEquality addLevel lambdaFormation instantiate cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination baseClosed because_Cache unionElimination imageElimination productElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidEquality sqequalRule independent_pairFormation computeAll dependent_set_memberEquality pointwiseFunctionality promote_hyp baseApply closedConclusion hyp_replacement Error :applyLambdaEquality,  remainderEquality imageMemberEquality applyEquality equalityEquality impliesFunctionality setEquality

Latex:
\mforall{}[n,m:\mBbbN{}].    n  <  m  supposing  n  <  ((n  +  m)  +  1)  \mdiv{}  2



Date html generated: 2016_10_25-AM-10_59_26
Last ObjectModification: 2016_07_12-AM-07_07_09

Theory : general


Home Index