Nuprl Lemma : apply-nth_wf

[T:Type]. ∀[n:ℕ]. ∀[A:ℕ1 ⟶ Type]. ∀[f:funtype(n 1;A;T)]. ∀[x:A[n]].  (apply-nth(n; f; x) ∈ funtype(n;A;T))


Proof




Definitions occuring in Statement :  apply-nth: apply-nth(n; f; x) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T apply-nth: apply-nth(n; f; x) all: x:A. B[x] implies:  Q prop: so_apply: x[s] nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top le: A ≤ B ge: i ≥  funtype: funtype(n;A;T) eq_int: (i =z j) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  subtract: m sq_type: SQType(T) guard: {T} true: True bfalse: ff iff: ⇐⇒ Q rev_implies:  Q less_than': less_than'(a;b) less_than: a < b squash: T subtype_rel: A ⊆B bnot: ¬bb assert: b nequal: a ≠ b ∈  so_lambda: λ2x.t[x]
Lemmas referenced :  funtype_wf equal_wf int_seg_wf decidable__lt satisfiable-full-omega-tt intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf nat_properties decidable__le intformand_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_le_lemma le_wf nat_wf ge_wf less_than_wf primrec-unroll bfalse_wf bool_wf uiff_transitivity equal-wf-base assert_wf eq_int_wf eqtt_to_assert assert_of_eq_int subtype_base_sq int_subtype_base iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot primrec0_lemma false_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtract-add-cancel intformeq_wf int_formula_prop_eq_lemma bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int add-subtract-cancel less_than_transitivity1 le_weakening less_than_irreflexivity primrec_wf int_seg_properties compose_wf minus-one-mul add-mul-special zero-mul minus-add minus-minus add-associates add-swap add-commutes zero-add add-member-int_seg2 squash_wf true_wf decidable__equal_int itermMultiply_wf int_term_value_mul_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin functionEquality extract_by_obid sqequalHypSubstitution isectElimination because_Cache hypothesis lambdaFormation applyEquality functionExtensionality hypothesisEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination sqequalRule axiomEquality natural_numberEquality addEquality setElimination rename dependent_set_memberEquality independent_pairFormation unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll productElimination cumulativity universeEquality intWeakElimination equalityElimination baseClosed instantiate promote_hyp impliesFunctionality imageMemberEquality baseApply closedConclusion multiplyEquality hyp_replacement imageElimination minusEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  +  1  {}\mrightarrow{}  Type].  \mforall{}[f:funtype(n  +  1;A;T)].  \mforall{}[x:A[n]].
    (apply-nth(n;  f;  x)  \mmember{}  funtype(n;A;T))



Date html generated: 2018_05_21-PM-08_02_22
Last ObjectModification: 2017_07_26-PM-05_38_55

Theory : general


Home Index