Nuprl Lemma : expfact_wf

[m:ℕ+]. ∀[k:ℕ]. ∀[n:ℕ+].  ∀b:{b:ℕk^b < (b)!} ((m ≤ b)  (expfact(m;k;n k^m;(m)!) ∈ {b:ℕ+(n k^b) ≤ (b)!} \000C))


Proof




Definitions occuring in Statement :  expfact: expfact(n;x;p;b) fact: (n)! exp: i^n nat_plus: + nat: less_than: a < b uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q member: t ∈ T set: {x:A| B[x]}  multiply: m
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] nat_plus: + nat: so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: so_apply: x[s] all: x:A. B[x] implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q expfact: expfact(n;x;p;b) decidable: Dec(P) or: P ∨ Q sq_stable: SqStable(P) squash: T bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff guard: {T} le: A ≤ B subtract: m less_than: a < b has-value: (a)↓ sq_type: SQType(T) iff: ⇐⇒ Q rev_implies:  Q less_than': less_than'(a;b) true: True
Lemmas referenced :  le-add-cancel add_functionality_wrt_le add-commutes add-swap condition-implies-le less-iff-le not-le-2 set_subtype_base zero-add zero-mul add-mul-special minus-one-mul-top add-associates minus-one-mul minus-minus minus-add trivial-int-eq1 equal_wf fact_unroll_1 add-subtract-cancel exp_step mul-swap int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf decidable__equal_int int_subtype_base subtype_base_sq int-value-type value-type-has-value decidable__lt false_wf int_term_value_mul_lemma itermMultiply_wf multiply-is-int-iff nat_plus_subtype_nat add-zero minus-zero assert_of_lt_int bnot_of_le_int assert_functionality_wrt_uiff eqff_to_assert assert_of_le_int eqtt_to_assert uiff_transitivity bnot_wf lt_int_wf assert_wf equal-wf-T-base bool_wf nat_plus_properties sq_stable__less_than le_int_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties nat_plus_wf fact_wf exp_wf2 less_than_wf nat_wf set_wf le_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality multiplyEquality applyEquality setEquality because_Cache isect_memberFormation introduction lambdaFormation dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination unionElimination dependent_set_memberEquality imageMemberEquality baseClosed imageElimination equalityElimination productElimination equalityEquality pointwiseFunctionality promote_hyp baseApply closedConclusion callbyvalueReduce addEquality instantiate minusEquality cumulativity

Latex:
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].
    \mforall{}b:\{b:\mBbbN{}|  n  *  k\^{}b  <  (b)!\}  .  ((m  \mleq{}  b)  {}\mRightarrow{}  (expfact(m;k;n  *  k\^{}m;(m)!)  \mmember{}  \{b:\mBbbN{}\msupplus{}|  (n  *  k\^{}b)  \mleq{}  (b)!\}  ))



Date html generated: 2016_05_15-PM-04_06_59
Last ObjectModification: 2016_01_16-AM-11_04_42

Theory : general


Home Index