Nuprl Lemma : filter_of_filter2
∀[T:Type]. ∀[L:T List]. ∀[P:ℕ||L|| ⟶ 𝔹]. ∀[Q:T ⟶ 𝔹].
  (filter(Q;filter2(P;L)) = filter2(λi.((P i) ∧b (Q L[i]));L) ∈ (T List))
Proof
Definitions occuring in Statement : 
filter2: filter2(P;L), 
select: L[n], 
length: ||as||, 
filter: filter(P;l), 
list: T List, 
band: p ∧b q, 
int_seg: {i..j-}, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
prop: ℙ, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
less_than: a < b, 
squash: ↓T, 
bfalse: ff, 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
subtract: n - m, 
true: True, 
nat_plus: ℕ+, 
less_than': less_than'(a;b), 
cons: [a / b], 
select: L[n], 
le: A ≤ B, 
ge: i ≥ j , 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q
Lemmas referenced : 
list_induction, 
uall_wf, 
int_seg_wf, 
length_wf, 
bool_wf, 
equal_wf, 
list_wf, 
filter_wf5, 
filter2_wf, 
subtype_rel_dep_function, 
l_member_wf, 
subtype_rel_self, 
set_wf, 
eqtt_to_assert, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
length_of_nil_lemma, 
filter2_nil_lemma, 
filter_nil_lemma, 
nil_wf, 
length_of_cons_lemma, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
add-member-int_seg2, 
lelt_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
add-is-int-iff, 
nat_plus_properties, 
nat_plus_wf, 
less_than_wf, 
length_wf_nat, 
add_nat_plus, 
false_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
non_neg_length, 
cons_wf, 
cons_filter2, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
add-subtract-cancel, 
select-cons-tl, 
filter2_functionality, 
filter_cons_lemma, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
natural_numberEquality, 
cumulativity, 
hypothesis, 
because_Cache, 
functionExtensionality, 
applyEquality, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_functionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
axiomEquality, 
inhabitedIsType, 
addEquality, 
universeEquality, 
instantiate, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
baseClosed, 
imageMemberEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
hyp_replacement
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbB{}].
    (filter(Q;filter2(P;L))  =  filter2(\mlambda{}i.((P  i)  \mwedge{}\msubb{}  (Q  L[i]));L))
Date html generated:
2019_10_15-AM-10_55_12
Last ObjectModification:
2018_09_27-AM-10_44_55
Theory : list!
Home
Index