Nuprl Lemma : det-diagonal

[r:CRng]. ∀[n:ℕ]. ∀[F:ℕn ⟶ |r|].  (|diagonal-matrix(r;i.F[i])| (r) 0 ≤ i < n. F[i]) ∈ |r|)


Proof




Definitions occuring in Statement :  diagonal-matrix: diagonal-matrix(r;x.F[x]) matrix-det: |M| int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T rng_prod: rng_prod crng: CRng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: crng: CRng rng: Rng squash: T so_lambda: λ2x.t[x] so_apply: x[s] true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q int_seg: {i..j-} lelt: i ≤ j < k bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) diagonal-matrix: diagonal-matrix(r;x.F[x]) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b infix_ap: y cand: c∧ B nequal: a ≠ b ∈  ringeq_int_terms: t1 ≡ t2 matrix: Matrix(n;m;r) matrix-minor: matrix-minor(i;j;m) mx: matrix(M[x; y]) less_than: a < b less_than': less_than'(a;b) nat_plus: +
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf rng_car_wf equal_wf squash_wf true_wf matrix-det-dim0 rng_prod_wf subtype_rel_self iff_weakening_equal rng_prod_unroll_base rng_one_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf crng_wf expand-det-by-row le_wf decidable__lt lelt_wf diagonal-matrix_wf rng_sum_unroll_hi infix_ap_wf rng_times_wf isEven_wf bool_wf eqtt_to_assert matrix_ap_mx_lemma rng_zero_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot rng_minus_wf matrix-det_wf matrix-minor_wf rng_plus_wf rng_sum_is_0 eq_int_wf assert_of_eq_int int_seg_properties intformeq_wf int_formula_prop_eq_lemma neg_assert_of_eq_int itermAdd_wf itermMultiply_wf itermMinus_wf ringeq-iff-rsub-is-0 mx_wf ring_polynomial_null int-to-ring_wf ring_term_value_add_lemma ring_term_value_mul_lemma ring_term_value_const_lemma int-to-ring-zero ring_term_value_var_lemma ring_term_value_minus_lemma two-mul btrue_wf assert-isEven equal-wf-base int_subtype_base matrix_wf rng_wf lt_int_wf assert_of_lt_int top_wf rng_prod_unroll_hi
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation axiomEquality functionEquality applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache imageMemberEquality baseClosed instantiate productElimination unionElimination dependent_set_memberEquality functionExtensionality addEquality equalityElimination promote_hyp cumulativity int_eqReduceTrueSq int_eqReduceFalseSq multiplyEquality baseApply closedConclusion hyp_replacement applyLambdaEquality lessCases sqequalAxiom

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[F:\mBbbN{}n  {}\mrightarrow{}  |r|].    (|diagonal-matrix(r;i.F[i])|  =  (\mPi{}(r)  0  \mleq{}  i  <  n.  F[i]))



Date html generated: 2018_05_21-PM-09_39_32
Last ObjectModification: 2018_05_19-PM-04_31_08

Theory : matrices


Home Index