Nuprl Lemma : det-diagonal
∀[r:CRng]. ∀[n:ℕ]. ∀[F:ℕn ⟶ |r|]. (|diagonal-matrix(r;i.F[i])| = (Π(r) 0 ≤ i < n. F[i]) ∈ |r|)
Proof
Definitions occuring in Statement :
diagonal-matrix: diagonal-matrix(r;x.F[x])
,
matrix-det: |M|
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
equal: s = t ∈ T
,
rng_prod: rng_prod,
crng: CRng
,
rng_car: |r|
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
crng: CRng
,
rng: Rng
,
squash: ↓T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
diagonal-matrix: diagonal-matrix(r;x.F[x])
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
infix_ap: x f y
,
cand: A c∧ B
,
nequal: a ≠ b ∈ T
,
ringeq_int_terms: t1 ≡ t2
,
matrix: Matrix(n;m;r)
,
matrix-minor: matrix-minor(i;j;m)
,
mx: matrix(M[x; y])
,
less_than: a < b
,
less_than': less_than'(a;b)
,
nat_plus: ℕ+
Lemmas referenced :
nat_properties,
full-omega-unsat,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
int_seg_wf,
rng_car_wf,
equal_wf,
squash_wf,
true_wf,
matrix-det-dim0,
rng_prod_wf,
subtype_rel_self,
iff_weakening_equal,
rng_prod_unroll_base,
rng_one_wf,
decidable__le,
subtract_wf,
intformnot_wf,
itermSubtract_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
nat_wf,
crng_wf,
expand-det-by-row,
le_wf,
decidable__lt,
lelt_wf,
diagonal-matrix_wf,
rng_sum_unroll_hi,
infix_ap_wf,
rng_times_wf,
isEven_wf,
bool_wf,
eqtt_to_assert,
matrix_ap_mx_lemma,
rng_zero_wf,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
rng_minus_wf,
matrix-det_wf,
matrix-minor_wf,
rng_plus_wf,
rng_sum_is_0,
eq_int_wf,
assert_of_eq_int,
int_seg_properties,
intformeq_wf,
int_formula_prop_eq_lemma,
neg_assert_of_eq_int,
itermAdd_wf,
itermMultiply_wf,
itermMinus_wf,
ringeq-iff-rsub-is-0,
mx_wf,
ring_polynomial_null,
int-to-ring_wf,
ring_term_value_add_lemma,
ring_term_value_mul_lemma,
ring_term_value_const_lemma,
int-to-ring-zero,
ring_term_value_var_lemma,
ring_term_value_minus_lemma,
two-mul,
btrue_wf,
assert-isEven,
equal-wf-base,
int_subtype_base,
matrix_wf,
rng_wf,
lt_int_wf,
assert_of_lt_int,
top_wf,
rng_prod_unroll_hi
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
lambdaFormation,
natural_numberEquality,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
axiomEquality,
functionEquality,
applyEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
universeEquality,
because_Cache,
imageMemberEquality,
baseClosed,
instantiate,
productElimination,
unionElimination,
dependent_set_memberEquality,
functionExtensionality,
addEquality,
equalityElimination,
promote_hyp,
cumulativity,
int_eqReduceTrueSq,
int_eqReduceFalseSq,
multiplyEquality,
baseApply,
closedConclusion,
hyp_replacement,
applyLambdaEquality,
lessCases,
sqequalAxiom
Latex:
\mforall{}[r:CRng]. \mforall{}[n:\mBbbN{}]. \mforall{}[F:\mBbbN{}n {}\mrightarrow{} |r|]. (|diagonal-matrix(r;i.F[i])| = (\mPi{}(r) 0 \mleq{} i < n. F[i]))
Date html generated:
2018_05_21-PM-09_39_32
Last ObjectModification:
2018_05_19-PM-04_31_08
Theory : matrices
Home
Index