Nuprl Lemma : rat-complex-subdiv-non-nil

[k,n:ℕ]. ∀[K:n-dim-complex].  0 < ||(K)'|| supposing 0 < ||K||


Proof




Definitions occuring in Statement :  rat-complex-subdiv: (K)' rational-cube-complex: n-dim-complex length: ||as|| nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B rational-cube-complex: n-dim-complex all: x:A. B[x] or: P ∨ Q less_than: a < b squash: T less_than': less_than'(a;b) false: False and: P ∧ Q cons: [a b] top: Top exists: x:A. B[x] cand: c∧ B l_member: (x ∈ l) nat: le: A ≤ B not: ¬A implies:  Q select: L[n] ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) prop: rev_implies:  Q iff: ⇐⇒ Q true: True guard: {T} nat_plus: + uiff: uiff(P;Q) rational-cube: Cube(k) rational-interval: Interval rev_uimplies: rev_uimplies(P;Q) is-half-interval: is-half-interval(I;J) sq_type: SQType(T) bfalse: ff band: p ∧b q ifthenelse: if then else fi 
Lemmas referenced :  member_not_nil rational-cube_wf rat-complex-subdiv_wf list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma istype-void istype-le cons_wf istype-less_than length_wf select_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf l_member_wf istype-assert is-half-cube_wf member-rat-complex-subdiv2 less_than_wf squash_wf true_wf length_of_null_list nil_wf subtype_rel_self iff_weakening_equal add_nat_plus length_wf_nat decidable__lt intformless_wf int_formula_prop_less_lemma nat_plus_properties add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma false_wf list_wf member-less_than rational-cube-complex_wf istype-nat qavg_wf int_seg_wf assert-is-half-cube assert_wf bor_wf qeq_wf2 bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert band_wf btrue_wf assert-qeq bfalse_wf member_wf rationals_wf equal_wf iff_transitivity iff_weakening_uiff assert_of_bor assert_of_band
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality_alt setElimination rename because_Cache sqequalRule independent_isectElimination dependent_functionElimination unionElimination imageElimination productElimination voidElimination promote_hyp hypothesis_subsumption isect_memberEquality_alt dependent_pairFormation_alt dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation lambdaFormation_alt inhabitedIsType productIsType equalityIstype approximateComputation independent_functionElimination int_eqEquality universeIsType equalityTransitivity equalitySymmetry imageMemberEquality baseClosed instantiate universeEquality applyLambdaEquality pointwiseFunctionality baseApply closedConclusion functionIsType isectIsTypeImplies independent_pairEquality cumulativity unionEquality productEquality unionIsType inlFormation_alt inrFormation_alt

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:n-dim-complex].    0  <  ||(K)'||  supposing  0  <  ||K||



Date html generated: 2020_05_20-AM-09_23_32
Last ObjectModification: 2019_10_31-AM-00_58_04

Theory : rationals


Home Index