Nuprl Lemma : rat-complex-subdiv-non-nil
∀[k,n:ℕ]. ∀[K:n-dim-complex].  0 < ||(K)'|| supposing 0 < ||K||
Proof
Definitions occuring in Statement : 
rat-complex-subdiv: (K)'
, 
rational-cube-complex: n-dim-complex
, 
length: ||as||
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
rational-cube-complex: n-dim-complex
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
and: P ∧ Q
, 
cons: [a / b]
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
select: L[n]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
guard: {T}
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
rational-cube: ℚCube(k)
, 
rational-interval: ℚInterval
, 
rev_uimplies: rev_uimplies(P;Q)
, 
is-half-interval: is-half-interval(I;J)
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
Lemmas referenced : 
member_not_nil, 
rational-cube_wf, 
rat-complex-subdiv_wf, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
istype-void, 
istype-le, 
cons_wf, 
istype-less_than, 
length_wf, 
select_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
l_member_wf, 
istype-assert, 
is-half-cube_wf, 
member-rat-complex-subdiv2, 
less_than_wf, 
squash_wf, 
true_wf, 
length_of_null_list, 
nil_wf, 
subtype_rel_self, 
iff_weakening_equal, 
add_nat_plus, 
length_wf_nat, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
nat_plus_properties, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
false_wf, 
list_wf, 
member-less_than, 
rational-cube-complex_wf, 
istype-nat, 
qavg_wf, 
int_seg_wf, 
assert-is-half-cube, 
assert_wf, 
bor_wf, 
qeq_wf2, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
assert-qeq, 
bfalse_wf, 
member_wf, 
rationals_wf, 
equal_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_band
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
imageElimination, 
productElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality_alt, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation_alt, 
inhabitedIsType, 
productIsType, 
equalityIstype, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
applyLambdaEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
functionIsType, 
isectIsTypeImplies, 
independent_pairEquality, 
cumulativity, 
unionEquality, 
productEquality, 
unionIsType, 
inlFormation_alt, 
inrFormation_alt
Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:n-dim-complex].    0  <  ||(K)'||  supposing  0  <  ||K||
Date html generated:
2020_05_20-AM-09_23_32
Last ObjectModification:
2019_10_31-AM-00_58_04
Theory : rationals
Home
Index