Nuprl Lemma : ranked-eo-before

[L:Id ─→ (Top List)]. ∀[rk:Top]. ∀[e:E].  (before(e) map(λn.<fst(e), n>;upto(snd(e))))


Proof




Definitions occuring in Statement :  ranked-eo: ranked-eo(L;rk) es-before: before(e) es-E: E Id: Id upto: upto(n) map: map(f;as) list: List uall: [x:A]. B[x] top: Top pi1: fst(t) pi2: snd(t) lambda: λx.A[x] function: x:A ─→ B[x] pair: <a, b> sqequal: t
Lemmas :  ranked-eo-E-sq int_seg_subtype-nat false_wf nat_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf int_seg_wf decidable__le subtract_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf decidable__lt not-equal-2 le-add-cancel-alt lelt_wf not-le-2 sq_stable__le add-mul-special zero-mul set_wf Id_wf length_wf top_wf true_wf list_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat nequal-le-implies ranked-eo-first ranked-eo-pred int_subtype_base list_subtype_base product_subtype_base atom2_subtype_base set_subtype_base map_wf nil_wf subtract-is-less upto_decomp1 map_append_sq map_cons_lemma map_nil_lemma

Latex:
\mforall{}[L:Id  {}\mrightarrow{}  (Top  List)].  \mforall{}[rk:Top].  \mforall{}[e:E].    (before(e)  \msim{}  map(\mlambda{}n.<fst(e),  n>upto(snd(e))))



Date html generated: 2015_07_21-PM-04_44_51
Last ObjectModification: 2015_01_27-PM-05_04_29

Home Index