Nuprl Lemma : firstn-es-open-interval

[es:EO]. ∀[e1,e2:E]. ∀[n:ℕ||(e1, e2)||].  (firstn(n;(e1, e2)) (e1, (e1, e2)[n]) ∈ (E List))


Proof




Definitions occuring in Statement :  es-open-interval: (e, e') es-E: E event_ordering: EO select: L[n] firstn: firstn(n;as) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel nat_wf int_seg_subtype-nat int_seg_wf length_wf es-E_wf es-open-interval_wf event_ordering_wf first0 subtype_rel_list top_wf select0 es-open-interval-nil hd_wf le-add-cancel2 assert_wf es-first_wf2 nil_wf member-es-open-interval le_wf select_wf sq_stable__le assert_elim es-locl-first btrue_neq_bfalse es-le_wf pred-hd-es-open-interval iff_weakening_equal es-le-self decidable__lt firstn_decomp le_weakening2 length_wf_nat equal_wf list_wf append_wf cons_wf not-le-2 filter_append_sq filter_cons_lemma filter_nil_lemma es-bless_wf bnot_wf not_wf es-locl_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert-es-bless eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot filter_wf5 squash_wf true_wf set_wf l_member_wf es-before_wf equal-wf-T-base uiff_transitivity select_member lelt_wf pred-member-es-open-interval
\mforall{}[es:EO].  \mforall{}[e1,e2:E].  \mforall{}[n:\mBbbN{}||(e1,  e2)||].    (firstn(n;(e1,  e2))  =  (e1,  (e1,  e2)[n]))



Date html generated: 2015_07_17-AM-08_43_57
Last ObjectModification: 2015_02_04-AM-07_09_40

Home Index