Nuprl Lemma : firstn-es-open-interval
∀[es:EO]. ∀[e1,e2:E]. ∀[n:ℕ||(e1, e2)||].  (firstn(n;(e1, e2)) = (e1, (e1, e2)[n]) ∈ (E List))
Proof
Definitions occuring in Statement : 
es-open-interval: (e, e')
, 
es-E: E
, 
event_ordering: EO
, 
select: L[n]
, 
firstn: firstn(n;as)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
nat_wf, 
int_seg_subtype-nat, 
int_seg_wf, 
length_wf, 
es-E_wf, 
es-open-interval_wf, 
event_ordering_wf, 
first0, 
subtype_rel_list, 
top_wf, 
select0, 
es-open-interval-nil, 
hd_wf, 
le-add-cancel2, 
assert_wf, 
es-first_wf2, 
nil_wf, 
member-es-open-interval, 
le_wf, 
select_wf, 
sq_stable__le, 
assert_elim, 
es-locl-first, 
btrue_neq_bfalse, 
es-le_wf, 
pred-hd-es-open-interval, 
iff_weakening_equal, 
es-le-self, 
decidable__lt, 
firstn_decomp, 
le_weakening2, 
length_wf_nat, 
equal_wf, 
list_wf, 
append_wf, 
cons_wf, 
not-le-2, 
filter_append_sq, 
filter_cons_lemma, 
filter_nil_lemma, 
es-bless_wf, 
bnot_wf, 
not_wf, 
es-locl_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert-es-bless, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
filter_wf5, 
squash_wf, 
true_wf, 
set_wf, 
l_member_wf, 
es-before_wf, 
equal-wf-T-base, 
uiff_transitivity, 
select_member, 
lelt_wf, 
pred-member-es-open-interval
\mforall{}[es:EO].  \mforall{}[e1,e2:E].  \mforall{}[n:\mBbbN{}||(e1,  e2)||].    (firstn(n;(e1,  e2))  =  (e1,  (e1,  e2)[n]))
Date html generated:
2015_07_17-AM-08_43_57
Last ObjectModification:
2015_02_04-AM-07_09_40
Home
Index