Nuprl Lemma : case-type-comp_wf1

[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[B:{Gamma, psi ⊢ _}]. ∀[cA:Gamma, phi ⊢ Compositon(A)].
[cB:Gamma, psi ⊢ Compositon(B)].
  (case-type-comp(Gamma; phi; psi; A; B; cA; cB)
   ∈ composition-function{j:l,i:l}(Gamma, (phi ∨ psi);(if phi then else B))) supposing 
     (compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB) and 
     Gamma, (phi ∧ psi) ⊢ B)


Proof




Definitions occuring in Statement :  case-type-comp: case-type-comp(G; phi; psi; A; B; cA; cB) compatible-composition: compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB) composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) case-type: (if phi then else B) same-cubical-type: Gamma ⊢ B context-subset: Gamma, phi face-or: (a ∨ b) face-and: (a ∧ b) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T case-type-comp: case-type-comp(G; phi; psi; A; B; cA; cB) composition-function: composition-function{j:l,i:l}(Gamma;A) subtype_rel: A ⊆B face-term-implies: Gamma ⊢ (phi  psi) all: x:A. B[x] implies:  Q context-subset: Gamma, phi bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt csm-id-adjoin: [u] csm-id: 1(X) same-cubical-type: Gamma ⊢ B cand: c∧ B interval-0: 0(𝕀) csm-ap-term: (t)s csm-adjoin: (s;u) csm-ap: (s)x constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} cubical-type: {X ⊢ _} csm-ap-type: (AF)s composition-structure: Gamma ⊢ Compositon(A) guard: {T} squash: T interval-1: 1(𝕀) compatible-composition: compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB) true: True same-cubical-term: X ⊢ u=v:A or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q cubical-term: {X ⊢ _:A} respects-equality: respects-equality(S;T) case-type: (if phi then else B) cubical-term-at: u(a)
Lemmas referenced :  case-type_wf csm-face-or csm-face-term-implies context-subset_wf face-or_wf face-1_wf subset-cubical-term context-subset-is-subset face-type_wf I_cube_pair_redex_lemma lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf subtype_rel_self lattice-1_wf I_cube_wf fset_wf nat_wf cube-context-adjoin_wf interval-type_wf csm-face-1 face-forall_wf csm-ap-term_wf csm-face-type csm-same-cubical-type face-and_wf context-subset-subtype-and context-subset-subtype-and2 csm-face-and context-subset-map cube_set_map_subtype3 sub_cubical_set_self csm-ap-type_wf subset-cubical-type sub_cubical_set_functionality constrained-cubical-term_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 cubical-term-eqcd cube_set_map_wf cubical_set_wf compatible-composition_wf same-cubical-type_wf face-term-implies-subset face-term-and-implies1 face-term-and-implies2 composition-structure_wf cubical-type_wf istype-cubical-term csm-case-type context-iterated-subset1 case-type-same1 sub_cubical_set_transitivity context-iterated-subset2 cc-fst_wf_interval context-adjoin-subset2 face-forall-implies context-subset-swap sub_cubical_set_functionality2 csm-id-adjoin_wf interval-0_wf face-forall-implies-0 thin-context-subset context-subset-term-subtype face-forall-map case-type-same2 interval-1_wf cube_set_map_subtype2 face-term-and-implies face-forall-implies-1 case-term-wf4 squash_wf true_wf face-forall-and context-adjoin-subset istype-universe cubical-term_wf composition-in-subset same-cubical-type-by-cases face-term-or-implies face-term-implies-or face-term-implies_wf csm-id-adjoin-subset iff_weakening_equal csm-id-adjoin_wf-interval-1 face-1-implies-subset sub_cubical_set_wf face-forall-or implies-face-forall-holds context-iterated-subset0 subset-cubical-term2 respects-equality-set cubical-type-at_wf all_wf names-hom_wf cube-set-restriction_wf cubical-type-ap-morph_wf istype-cubical-type-at subset-I_cube subtype-respects-equality subtype_rel_dep_function respects-equality-context-subset-term same-cubical-term-by-cases case-term_wf2 cubical_type_ap_morph_pair_lemma case-term-equal-right context-iterated-subset case-term-equal-left
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_isectElimination hypothesis functionExtensionality sqequalRule rename Error :memTop,  applyEquality lambdaFormation_alt dependent_functionElimination setElimination equalityIstype universeIsType instantiate lambdaEquality_alt productEquality cumulativity isectEquality inhabitedIsType equalityTransitivity equalitySymmetry independent_pairFormation universeEquality hyp_replacement independent_functionElimination applyLambdaEquality dependent_set_memberEquality_alt productElimination promote_hyp imageMemberEquality baseClosed imageElimination natural_numberEquality inrFormation_alt inlFormation_alt functionEquality functionIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma,  psi  \mvdash{}  \_\}].
\mforall{}[cA:Gamma,  phi  \mvdash{}  Compositon(A)].  \mforall{}[cB:Gamma,  psi  \mvdash{}  Compositon(B)].
    (case-type-comp(Gamma;  phi;  psi;  A;  B;  cA;  cB)
      \mmember{}  composition-function\{j:l,i:l\}(Gamma,  (phi  \mvee{}  psi);(if  phi  then  A  else  B)))  supposing 
          (compatible-composition\{j:l,  i:l\}(Gamma;  phi;  psi;  A;  B;  cA;  cB)  and 
          Gamma,  (phi  \mwedge{}  psi)  \mvdash{}  A  =  B)



Date html generated: 2020_05_20-PM-05_17_00
Last ObjectModification: 2020_04_18-PM-06_13_32

Theory : cubical!type!theory


Home Index