Nuprl Lemma : nc-e'-comp-m-2

[I,J:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[j:{j:ℕ| ¬j ∈ J} ]. ∀[g:J ⟶ I]. ∀[l:{i:ℕ| ¬i ∈ J+j} ].
  (s ⋅ g,i=j ⋅ m(j;l) g ⋅ s ⋅ s ∈ J+j+l ⟶ I)


Proof




Definitions occuring in Statement :  nc-e': g,i=j nc-m: m(i;j) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names-hom: I ⟶ J not: ¬A implies:  Q subtype_rel: A ⊆B uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: top: Top compose: g nc-s: s names: names(I) DeMorgan-algebra: DeMorganAlgebra guard: {T} true: True squash: T iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 nc-e': g,i=j sq_stable: SqStable(P) nc-m: m(i;j)
Lemmas referenced :  names_wf istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-void names-hom_wf nh-comp-sq lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift_wf2 nc-m_wf trivial-member-add-name1 nc-e'_wf names-subtype f-subset-add-name nc-s_wf squash_wf true_wf istype-universe dM-lift-inc dM-lift-s subtype_rel_self iff_weakening_equal neg_assert_of_eq_int assert-bnot bool_wf subtype_base_sq bool_cases_sqequal bool_subtype_base int_subtype_base not_wf set_subtype_base eqff_to_assert assert_of_eq_int eqtt_to_assert eq_int_wf fset_wf deq_wf sq_stable__not dM-point-subtype uall_wf f-subset_wf dM-lift-is-id2 f-subset-add-name1 equal-wf-T-base dM_inc_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setIsType sqequalRule functionIsType universeIsType applyEquality intEquality independent_isectElimination because_Cache lambdaEquality_alt natural_numberEquality dependent_set_memberEquality_alt setElimination rename dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType instantiate productEquality cumulativity isectEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination equalityIsType1 promote_hyp closedConclusion baseApply equalityIsType4 equalityElimination lambdaFormation_alt hyp_replacement lambdaEquality dependent_set_memberEquality dependent_pairFormation isect_memberEquality voidEquality applyLambdaEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].  \mforall{}[g:J  {}\mrightarrow{}  I].  \mforall{}[l:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  J+j\}  ].
    (s  \mcdot{}  g,i=j  \mcdot{}  m(j;l)  =  g  \mcdot{}  s  \mcdot{}  s)



Date html generated: 2020_05_20-PM-01_37_41
Last ObjectModification: 2019_12_10-PM-01_11_29

Theory : cubical!type!theory


Home Index