Nuprl Lemma : transEquiv-trans-eq-path-trans

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[p:{G ⊢ _:(Path_c𝕌 B)}].
  (transEquivFun(p) (PathTransport(p) ConstTrans(decode(A))) ∈ {G ⊢ _:(decode(A) ⟶ decode(B))})


Proof




Definitions occuring in Statement :  transEquiv-trans: transEquivFun(p) path-trans: PathTransport(p) universe-comp-op: compOp(t) universe-decode: decode(t) cubical-universe: c𝕌 const-transport-fun: ConstTrans(A) path-type: (Path_A b) cubical-fun-comp: (f g) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cubical-term-at: u(a) cubical-fun-comp: (f g) cubical-app: app(w; u) const-transport-fun: ConstTrans(A) csm-ap-term: (t)s cubical-lam: cubical-lam(X;b) transport-const: transport-const(G;cA;a) cubical-lambda: b) all: x:A. B[x] cc-adjoin-cube: (v;u) cc-snd: q csm-composition: (comp)sigma transport: transport(Gamma;a) pi2: snd(t) composition-term: comp cA [phi ⊢→ u] a0 discrete-cubical-term: discr(t) face-0: 0(𝔽) cc-fst: p csm-ap: (s)x cube-context-adjoin: X.A pi1: fst(t) squash: T prop: subtype_rel: A ⊆B true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q cubical-universe: c𝕌 names: names(I) nat: so_lambda: λ2x.t[x] so_apply: x[s] fibrant-type: FibrantType(X) composition-op: Gamma ⊢ CompOp(A) formal-cube: formal-cube(I) bdd-distributive-lattice: BoundedDistributiveLattice lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 cube-set-restriction: f(s) fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-0: 0 empty-fset: {} nil: [] it: cand: c∧ B cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-type-at: A(a) closed-type-to-type: closed-type-to-type(T) closed-cubical-universe: cc𝕌 names-hom: I ⟶ J cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
Lemmas referenced :  cubical-term-at_wf transEquiv-trans-eq2 cubical-fun-equal universe-decode_wf cubical-fun-comp_wf const-transport-fun_wf universe-comp-op_wf path-trans_wf cc_fst_adjoin_cube_lemma istype-cubical-type-at cube-set-restriction_wf names-hom_wf I_cube_wf fset_wf nat_wf istype-cubical-term path-type_wf cubical-universe_wf istype-cubical-universe-term cubical_set_wf cube_set_restriction_pair_lemma path-trans-sq2 equal_wf squash_wf true_wf istype-universe add-name_wf new-name_wf nc-s_wf f-subset-add-name cube-set-restriction-id subtype_rel_self iff_weakening_equal path-type-at nh-id_wf dM_inc_wf trivial-member-add-name1 fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self I_cube_pair_redex_lemma lattice-0_wf face_lattice_wf face-presheaf_wf2 member-empty-cubical-subset cubical-path-0_wf formal-cube_wf1 pi1_wf_top cubical-type_wf cubical-type-cumulativity2 cubical-path-1_wf subtype_rel_dep_function cubical-type-at_wf lattice-point_wf dM_wf fibrant-type_wf_formal-cube nh-comp_wf nc-0_wf universe-type-at universe-path-type-lemma-0 cube-set-restriction-comp nh-id-left s-comp-nc-0-new equal-wf-T-base nh-id-right cubical-path-condition-0 cubical-path-condition_wf nc-1_wf universe-path-type-lemma-1 s-comp-if-lemma1 s-comp-nc-1-new nh-comp-assoc empty-cubical-subset-term cube-set-restriction-when-id face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache hypothesisEquality equalityTransitivity equalitySymmetry hypothesis independent_isectElimination sqequalRule dependent_functionElimination Error :memTop,  universeIsType applyEquality lambdaEquality_alt imageElimination universeEquality setElimination rename inhabitedIsType natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination applyLambdaEquality dependent_set_memberEquality_alt intEquality lambdaFormation_alt independent_pairEquality equalityIstype cumulativity hyp_replacement functionEquality equalityElimination

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[p:\{G  \mvdash{}  \_:(Path\_c\mBbbU{}  A  B)\}].
    (transEquivFun(p)  =  (PathTransport(p)  o  ConstTrans(decode(A))))



Date html generated: 2020_05_20-PM-07_39_31
Last ObjectModification: 2020_05_01-AM-10_19_51

Theory : cubical!type!theory


Home Index