Nuprl Lemma : trans-kernel-equation

[rv:InnerProductSpace]. ∀[e:{e:Point| e^2 r1} ]. ∀[T:ℝ ⟶ Point ⟶ Point].
  ∀[t:ℝ]. ∀[h:{h:Point| h ⋅ r0} ].  T_t(h) ≡ + ρ(h;t)*e supposing translation-group-fun(rv;e;T)


Proof




Definitions occuring in Statement :  trans-kernel: ρ(h;t) trans-apply: T_t(x) translation-group-fun: translation-group-fun(rv;e;T) rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-mul: a*x rv-add: y req: y int-to-real: r(n) real: ss-eq: x ≡ y ss-point: Point uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B guard: {T} all: x:A. B[x] prop: sq_stable: SqStable(P) implies:  Q translation-group-fun: translation-group-fun(rv;e;T) and: P ∧ Q trans-apply: T_t(x) squash: T ss-eq: x ≡ y not: ¬A false: False so_lambda: λ2x.t[x] so_apply: x[s] stable: Stable{P} or: P ∨ Q exists: x:A. B[x] trans-kernel: ρ(h;t) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 top: Top cand: c∧ B
Lemmas referenced :  sq_stable__ss-eq real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf trans-apply_wf real_wf rv-add_wf rv-mul_wf trans-kernel_wf req_wf rv-ip_wf int-to-real_wf ss-sep_wf set_wf ss-point_wf translation-group-fun_wf stable__ss-eq false_wf or_wf rless_wf not_wf ss-eq_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle rleq_weakening_rless rleq_wf radd_wf rmul_wf itermSubtract_wf itermAdd_wf itermConstant_wf itermMultiply_wf itermVar_wf req-iff-rsub-is-0 ss-eq_weakening uiff_transitivity ss-eq_functionality rv-add_functionality rv-mul_functionality rv-ip_functionality rv-ip-add radd_functionality req_transitivity rv-ip-mul rmul_functionality req_weakening real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_const_lemma real_term_value_mul_lemma real_term_value_var_lemma not-rless rleq-implies-rleq rminus_wf rsub_wf itermMinus_wf exists_wf real_term_value_minus_lemma ss-eq_inversion radd-rminus-both trans-apply_functionality trans-apply-0 equal_wf radd-rminus rv-0_wf rv-mul-add-alt rv-add-comm rv-mul0 rv-add-0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule dependent_functionElimination functionExtensionality because_Cache dependent_set_memberEquality natural_numberEquality independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination lambdaEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality voidElimination lambdaFormation unionElimination approximateComputation int_eqEquality intEquality voidEquality setEquality addLevel existsFunctionality promote_hyp dependent_pairFormation independent_pairFormation

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e:\{e:Point|  e\^{}2  =  r1\}  ].  \mforall{}[T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point].
    \mforall{}[t:\mBbbR{}].  \mforall{}[h:\{h:Point|  h  \mcdot{}  e  =  r0\}  ].    T\_t(h)  \mequiv{}  h  +  \mrho{}(h;t)*e  supposing  translation-group-fun(rv;e;T\000C)



Date html generated: 2017_10_05-AM-00_22_46
Last ObjectModification: 2017_07_02-PM-02_04_38

Theory : inner!product!spaces


Home Index