Nuprl Lemma : rat2real-qdiv
∀a:ℚ. ∀b:ℤ-o.  (rat2real((a/b)) = (rat2real(a)/r(b)))
Proof
Definitions occuring in Statement : 
rat2real: rat2real(q)
, 
rdiv: (x/y)
, 
req: x = y
, 
int-to-real: r(n)
, 
int_nzero: ℤ-o
, 
all: ∀x:A. B[x]
, 
qdiv: (r/s)
, 
rationals: ℚ
Definitions unfolded in proof : 
or: P ∨ Q
, 
rneq: x ≠ y
, 
req_int_terms: t1 ≡ t2
, 
rdiv: (x/y)
, 
guard: {T}
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
has-valueall: has-valueall(a)
, 
has-value: (a)↓
, 
callbyvalueall: callbyvalueall, 
qinv: 1/r
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
nequal: a ≠ b ∈ T 
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
int_nzero: ℤ-o
, 
prop: ℙ
, 
qmul: r * s
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
qdiv: (r/s)
, 
rat2real: rat2real(q)
, 
mk-rational: mk-rational(a;b)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
cand: A c∧ B
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rmul-rinv3, 
rinv-of-rmul, 
rinv_functionality2, 
rneq_functionality, 
int-rdiv-req, 
rless_wf, 
rless-int, 
int_entire_a, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
req-iff-rsub-is-0, 
rmul-rinv, 
req_weakening, 
rmul-int, 
req_inversion, 
int-rdiv_functionality, 
rmul_functionality, 
req_transitivity, 
req_functionality, 
rinv_wf2, 
itermMultiply_wf, 
itermSubtract_wf, 
rmul_wf, 
int-rdiv_wf, 
rmul_preserves_req, 
int_formula_prop_less_lemma, 
intformless_wf, 
mul_nzero, 
evalall-sqequal, 
evalall-reduce, 
set-valueall-type, 
int-valueall-type, 
product-valueall-type, 
valueall-type-has-valueall, 
int_nzero_wf, 
set_subtype_base, 
int_formula_prop_wf, 
int_formula_prop_not_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformnot_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
int_nzero_properties, 
rneq-int, 
int-to-real_wf, 
rdiv_wf, 
int_nzero-rational, 
nequal_wf, 
subtype_rel_set, 
qdiv_wf, 
rat2real_wf, 
req_wf, 
mk-rational-qdiv, 
istype-assert, 
assert-qeq, 
int_subtype_base, 
rationals_wf, 
equal-wf-base, 
int-subtype-rationals, 
qeq_wf2, 
assert_wf, 
iff_weakening_uiff, 
nat_plus_properties, 
q-elim
Rules used in proof : 
inrFormation_alt, 
equalityTransitivity, 
multiplyEquality, 
dependent_set_memberEquality_alt, 
closedConclusion, 
baseApply, 
isintReduceTrue, 
callbyvalueReduce, 
independent_pairEquality, 
productEquality, 
sqequalBase, 
equalityIstype, 
universeIsType, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
independent_isectElimination, 
inhabitedIsType, 
lambdaEquality_alt, 
intEquality, 
applyLambdaEquality, 
equalitySymmetry, 
hyp_replacement, 
baseClosed, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
applyEquality, 
independent_functionElimination, 
rename, 
setElimination, 
hypothesis, 
isectElimination, 
productElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a:\mBbbQ{}.  \mforall{}b:\mBbbZ{}\msupminus{}\msupzero{}.    (rat2real((a/b))  =  (rat2real(a)/r(b)))
Date html generated:
2019_10_31-AM-05_56_53
Last ObjectModification:
2019_10_30-PM-02_48_48
Theory : reals
Home
Index