Nuprl Lemma : assert-C_TYPE_eq
∀[a,b:C_TYPE()].  uiff(↑C_TYPE_eq(a;b);a = b ∈ C_TYPE())
Proof
Definitions occuring in Statement : 
C_TYPE_eq: C_TYPE_eq(a;b), 
C_TYPE: C_TYPE(), 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
C_TYPE_eq: C_TYPE_eq(a;b), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
C_TYPE_eq_fun: C_TYPE_eq_fun(a), 
C_Void: C_Void(), 
C_TYPE_ind: C_TYPE_ind, 
select: L[n], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
C_Void?: C_Void?(v), 
pi1: fst(t), 
eq_atom: x =a y, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
prop: ℙ, 
true: True, 
C_Int: C_Int(), 
bfalse: ff, 
false: False, 
C_Int?: C_Int?(v), 
not: ¬A, 
C_Struct: C_Struct(fields), 
C_Struct?: C_Struct?(v), 
C_Array: C_Array(length;elems), 
C_Array?: C_Array?(v), 
C_Pointer: C_Pointer(to), 
C_Pointer?: C_Pointer?(v), 
guard: {T}, 
bool: 𝔹, 
unit: Unit, 
band: p ∧b q, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
C_Struct-fields: C_Struct-fields(v), 
pi2: snd(t), 
nat: ℕ, 
ge: i ≥ j , 
squash: ↓T, 
sq_type: SQType(T), 
bnot: ¬bb, 
l_all: (∀x∈L.P[x]), 
le: A ≤ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
cand: A c∧ B, 
nequal: a ≠ b ∈ T , 
C_Array-length: C_Array-length(v), 
C_Array-elems: C_Array-elems(v), 
C_Pointer-to: C_Pointer-to(v)
Lemmas referenced : 
C_Pointer-to_wf, 
le_wf, 
decidable__equal_int, 
C_Array-elems_wf, 
C_Array-length_wf, 
equal-wf-base-T, 
C_TYPE_subtype_base, 
atom_subtype_base, 
product_subtype_base, 
list_subtype_base, 
assert_of_band, 
iff_weakening_uiff, 
iff_transitivity, 
band_wf, 
select-upto, 
lelt_wf, 
length_wf_nat, 
length_upto, 
assert-bl-all, 
less_than_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
list_extensionality, 
squash_wf, 
nat_properties, 
pi2_wf, 
assert_of_eq_atom, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
top_wf, 
subtype_rel_product, 
pi1_wf_top, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
select_wf, 
eq_atom_wf, 
upto_wf, 
int_seg_wf, 
bl-all_wf, 
assert_of_eq_int, 
C_Struct-fields_wf, 
length_wf, 
eq_int_wf, 
eqtt_to_assert, 
bool_wf, 
C_TYPE_eq_wf, 
assert_witness, 
C_Pointer_wf, 
C_Pointer?_wf, 
nat_wf, 
C_Array_wf, 
C_Array?_wf, 
list_wf, 
l_member_wf, 
l_all_wf2, 
C_Struct_wf, 
C_Struct?_wf, 
C_Int_wf, 
btrue_neq_bfalse, 
bfalse_wf, 
C_Int?_wf, 
and_wf, 
btrue_wf, 
false_wf, 
true_wf, 
C_Void_wf, 
C_Void?_wf, 
base_wf, 
stuck-spread, 
equal_wf, 
C_TYPE_eq_fun_wf, 
assert_wf, 
uiff_wf, 
C_TYPE_wf, 
all_wf, 
C_TYPE-induction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
lambdaEquality, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
independent_functionElimination, 
baseClosed, 
independent_isectElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
setElimination, 
rename, 
productElimination, 
setEquality, 
productEquality, 
atomEquality, 
spreadEquality, 
because_Cache, 
dependent_functionElimination, 
independent_pairEquality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
equalityEquality, 
imageElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
imageMemberEquality, 
functionEquality, 
addLevel, 
impliesFunctionality, 
substitution
Latex:
\mforall{}[a,b:C\_TYPE()].    uiff(\muparrow{}C\_TYPE\_eq(a;b);a  =  b)
 Date html generated: 
2016_05_16-AM-08_46_01
 Last ObjectModification: 
2016_01_17-AM-09_44_50
Theory : C-semantics
Home
Index