Nuprl Lemma : pcw-path-copathAgree

[A:𝕌']. ∀[B:A ⟶ Type].
  ∀w:coW(A;a.B[a]). ∀path:Path.
    (StepAgree(path 0;⋅;w)
     (∀i:ℕ
          ((copath-length(pcw-path-coPath(i 1;path)) (i 1) ∈ ℤ)
           (copath-length(pcw-path-coPath(i;path)) i ∈ ℤ)
           copathAgree(a.B[a];w;pcw-path-coPath(i;path);pcw-path-coPath(i 1;path)))))


Proof




Definitions occuring in Statement :  pcw-path-coPath: pcw-path-coPath(n;p) copathAgree: copathAgree(a.B[a];w;x;y) copath-length: copath-length(p) coW: coW(A;a.B[a]) pcw-path: Path pcw-step-agree: StepAgree(s;p1;w) nat: it: uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q unit: Unit apply: a function: x:A ⟶ B[x] add: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T uimplies: supposing a and: P ∧ Q nat: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False prop: uiff: uiff(P;Q) sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] pcw-path: Path coW: coW(A;a.B[a]) cand: c∧ B pcw-path-coPath: pcw-path-coPath(n;p) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff guard: {T} let: let pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) spreadn: spread3 copath: copath(a.B[a];w) copathAgree: copathAgree(a.B[a];w;x;y) copath-extend: copath-extend(q;t) less_than: a < b eq_int: (i =z j) coPath-extend: coPath-extend(n;p;t) coPath: coPath(a.B[a];w;n) coPathAgree: coPathAgree(a.B[a];n;w;p;q) ge: i ≥  exposed-it: exposed-it
Lemmas referenced :  pcw-path-coPath_wf decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf nat_wf pcw-step-agree_wf unit_wf2 it_wf pcw-path_wf coW_wf sq_stable__copathAgree equal_wf copath-length_wf eq_int_wf bool_wf equal-wf-T-base assert_wf bnot_wf not_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot le_antisymmetry_iff add-subtract-cancel pcw-step_wf copath-nil-Agree copath_wf top_wf squash_wf member_wf equal-wf-base decidable__lt not-lt-2 add-mul-special zero-mul coPath_wf le_weakening int_subtype_base minus-minus less-iff-le not-ge-2 subtract_wf true_wf less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties coW-dom_wf coW-item_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis productElimination dependent_set_memberEquality addEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination independent_pairFormation voidElimination independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination applyEquality lambdaEquality isect_memberEquality voidEquality intEquality because_Cache minusEquality instantiate cumulativity functionEquality universeEquality equalityTransitivity equalitySymmetry equalityElimination impliesFunctionality lessCases axiomSqEquality productEquality multiplyEquality closedConclusion baseApply functionExtensionality independent_pairEquality axiomEquality intWeakElimination

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}w:coW(A;a.B[a]).  \mforall{}path:Path.
        (StepAgree(path  0;\mcdot{};w)
        {}\mRightarrow{}  (\mforall{}i:\mBbbN{}
                    ((copath-length(pcw-path-coPath(i  +  1;path))  =  (i  +  1))
                    {}\mRightarrow{}  (copath-length(pcw-path-coPath(i;path))  =  i)
                    {}\mRightarrow{}  copathAgree(a.B[a];w;pcw-path-coPath(i;path);pcw-path-coPath(i  +  1;path)))))



Date html generated: 2019_06_20-PM-00_57_13
Last ObjectModification: 2019_01_02-PM-01_34_12

Theory : co-recursion-2


Home Index