Nuprl Lemma : seq-append-bar
∀k:ℕ. ∀s:ℕk ⟶ ℕ. ∀x:ℕ. ∀Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
  ((∀f:ℕ ⟶ ℕ. ∃n:ℕ. ∀m:{n...}. Q[m + k;seq-append(k;m;s;f)])
  
⇒ (∀f:ℕ ⟶ ℕ. ∃n:ℕ. ∀m:{n...}. Q[m + k;seq-append(k + 1;m;s.x@k;f)]))
Proof
Definitions occuring in Statement : 
seq-add: s.x@n
, 
seq-append: seq-append(n;m;s1;s2)
, 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
nat: ℕ
, 
false: False
, 
not: ¬A
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
int_upper: {i...}
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
true: True
, 
so_apply: x[s]
, 
seq-append: seq-append(n;m;s1;s2)
, 
seq-add: s.x@n
, 
int_seg: {i..j-}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
less_than: a < b
, 
lelt: i ≤ j < k
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
subtract_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
le_wf, 
int_upper_wf, 
all_wf, 
int_upper_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
seq-append_wf, 
upper_subtype_nat, 
sq_stable__le, 
seq-add_wf, 
int_seg_wf, 
subtype_rel_function, 
nat_wf, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
int_seg_subtype, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
zero-add, 
add-zero, 
add-commutes, 
le-add-cancel, 
exists_wf, 
decidable__equal_int, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
eq_int_wf, 
assert_of_eq_int, 
int_seg_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
lelt_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
lambdaEquality, 
int_eqEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
productElimination, 
addEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
minusEquality, 
multiplyEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
hyp_replacement, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
lessCases, 
isect_memberFormation, 
axiomSqEquality, 
int_eqReduceTrueSq, 
promote_hyp, 
instantiate, 
int_eqReduceFalseSq
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}s:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}.  \mforall{}x:\mBbbN{}.  \mforall{}Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  Q[m  +  k;seq-append(k;m;s;f)])
    {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  Q[m  +  k;seq-append(k  +  1;m;s.x@k;f)]))
Date html generated:
2019_06_20-PM-02_54_52
Last ObjectModification:
2018_08_20-PM-09_36_09
Theory : continuity
Home
Index