Nuprl Lemma : seq-append-bar

k:ℕ. ∀s:ℕk ⟶ ℕ. ∀x:ℕ. ∀Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
  ((∀f:ℕ ⟶ ℕ. ∃n:ℕ. ∀m:{n...}. Q[m k;seq-append(k;m;s;f)])
   (∀f:ℕ ⟶ ℕ. ∃n:ℕ. ∀m:{n...}. Q[m k;seq-append(k 1;m;s.x@k;f)]))


Proof




Definitions occuring in Statement :  seq-add: s.x@n seq-append: seq-append(n;m;s1;s2) int_upper: {i...} int_seg: {i..j-} nat: prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T nat: false: False not: ¬A uall: [x:A]. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] int_upper: {i...} guard: {T} subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True so_apply: x[s] seq-append: seq-append(n;m;s1;s2) seq-add: s.x@n int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt less_than: a < b lelt: i ≤ j < k bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  subtract_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf le_wf int_upper_wf all_wf int_upper_properties itermAdd_wf int_term_value_add_lemma seq-append_wf upper_subtype_nat sq_stable__le seq-add_wf int_seg_wf subtype_rel_function nat_wf int_seg_subtype_nat false_wf subtype_rel_self int_seg_subtype not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul zero-add add-zero add-commutes le-add-cancel exists_wf decidable__equal_int lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eq_int_wf assert_of_eq_int int_seg_properties intformless_wf int_formula_prop_less_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin lambdaEquality int_eqEquality setElimination rename because_Cache natural_numberEquality hypothesisEquality applyEquality functionExtensionality dependent_set_memberEquality introduction extract_by_obid isectElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation productElimination addEquality imageMemberEquality baseClosed imageElimination minusEquality multiplyEquality functionEquality cumulativity universeEquality hyp_replacement equalitySymmetry equalityTransitivity equalityElimination lessCases isect_memberFormation axiomSqEquality int_eqReduceTrueSq promote_hyp instantiate int_eqReduceFalseSq

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}s:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}.  \mforall{}x:\mBbbN{}.  \mforall{}Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  Q[m  +  k;seq-append(k;m;s;f)])
    {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  Q[m  +  k;seq-append(k  +  1;m;s.x@k;f)]))



Date html generated: 2019_06_20-PM-02_54_52
Last ObjectModification: 2018_08_20-PM-09_36_09

Theory : continuity


Home Index