Nuprl Lemma : mul-polynom_wf2
∀[n:ℕ]. ∀[p,q:polynom(n)].  (mul-polynom(n;p;q) ∈ polynom(n))
Proof
Definitions occuring in Statement : 
mul-polynom: mul-polynom(n;p;q), 
polynom: polynom(n), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
decidable: Dec(P), 
assert: ↑b, 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
uiff: uiff(P;Q), 
bfalse: ff, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
polyform: polyform(n), 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b), 
le: A ≤ B, 
has-value: (a)↓, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
polynom: polynom(n), 
subtract: n - m, 
polyconst: polyconst(n;k), 
mul-polynom: mul-polynom(n;p;q), 
prop: ℙ, 
and: P ∧ Q, 
top: Top, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
uimplies: b supposing a, 
ge: i ≥ j , 
false: False, 
implies: P ⇒ Q, 
nat: ℕ, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
polyform-lead-nonzero: polyform-lead-nonzero(n;p), 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
less_than: a < b, 
squash: ↓T, 
cons: [a / b], 
nat_plus: ℕ+, 
true: True, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
nat_wf, 
subtract_wf, 
polyconst_wf, 
polyform-value-type, 
polynom_subtype_polyform, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__le, 
value-type-polynom, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
subtract-1-ge-0, 
polynom_wf, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
int_subtype_base, 
eqff_to_assert, 
polyform_wf, 
subtype_rel_self, 
le_wf, 
istype-false, 
poly-zero_wf, 
int-value-type, 
value-type-has-value, 
istype-less_than, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_cases, 
istype-assert, 
equal-wf-base, 
not_wf, 
bnot_wf, 
assert_wf, 
eq_int_wf, 
istype-le, 
uiff_transitivity, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
list-cases, 
length_of_nil_lemma, 
null_nil_lemma, 
list_ind_nil_lemma, 
nil_wf, 
length_wf, 
hd_wf, 
subtype_rel_list, 
product_subtype_list, 
length_of_cons_lemma, 
reduce_hd_cons_lemma, 
null_cons_lemma, 
list_ind_cons_lemma, 
cons_wf, 
append_wf, 
polyconst_wf2, 
add_nat_plus, 
length_wf_nat, 
decidable__lt, 
length-append, 
nat_plus_properties, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
map_wf, 
map_cons_lemma, 
map_nil_lemma, 
iff_imp_equal_bool, 
nonzero-mul-polynom, 
assert_functionality_wrt_uiff, 
bfalse_wf, 
assert_of_ff, 
add-polynom_wf, 
eager-accum_wf, 
valueall-type-polynom
Rules used in proof : 
int_eqReduceFalseSq, 
int_eqReduceTrueSq, 
Error :equalityIsType1, 
multiplyEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
baseClosed, 
closedConclusion, 
baseApply, 
Error :equalityIsType2, 
productElimination, 
equalityElimination, 
unionElimination, 
applyEquality, 
Error :dependent_set_memberEquality_alt, 
because_Cache, 
intEquality, 
sqleReflexivity, 
callbyvalueReduce, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
Error :universeIsType, 
independent_pairFormation, 
voidElimination, 
Error :isect_memberEquality_alt, 
dependent_functionElimination, 
int_eqEquality, 
Error :lambdaEquality_alt, 
Error :dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
Error :lambdaFormation_alt, 
intWeakElimination, 
sqequalRule, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
Error :functionIsType, 
Error :equalityIsType4, 
Error :equalityIstype, 
sqequalBase, 
imageElimination, 
hypothesis_subsumption, 
applyLambdaEquality, 
pointwiseFunctionality, 
addEquality, 
imageMemberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:polynom(n)].    (mul-polynom(n;p;q)  \mmember{}  polynom(n))
Date html generated:
2019_06_20-PM-01_54_01
Last ObjectModification:
2019_01_21-PM-10_25_35
Theory : integer!polynomials
Home
Index