Nuprl Lemma : repeat-on-success_wf
∀[A,B:Type].
  (∀[C:Type]. ∀[f:A ⟶ (C?)]. ∀[g:(ℕ × C) ⟶ (A List) ⟶ (A List)].
     ∀[h:(ℕ × C) ⟶ B ⟶ B]. ∀[as:A List]. ∀[b:B].  (repeat-on-success(f;g;h;as;b) ∈ A List × B) 
     supposing ∃m:(A List) ⟶ ℕ
                ∀as:A List. ∀c:C. ∀j:ℕ.
                  ((first-success(f;as) = (inl <j, c>) ∈ (ℕ × C?)) 
⇒ m (g <j, c> as) < m as)) supposing 
     (value-type(B) and 
     valueall-type(A))
Proof
Definitions occuring in Statement : 
repeat-on-success: repeat-on-success(f;g;h;as;b)
, 
first-success: first-success(f;L)
, 
list: T List
, 
nat: ℕ
, 
valueall-type: valueall-type(T)
, 
value-type: value-type(T)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
unit: Unit
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
inl: inl x
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
repeat-on-success: repeat-on-success(f;g;h;as;b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
has-value: (a)↓
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
list_wf, 
nat_wf, 
subtype_rel-equal, 
base_wf, 
le_weakening, 
equal_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
first-success_wf, 
int_seg_wf, 
length_wf, 
unit_wf2, 
add_nat_wf, 
le_wf, 
sq_stable__le, 
decidable__lt, 
not-lt-2, 
add-mul-special, 
zero-mul, 
exists_wf, 
all_wf, 
subtype_rel_union, 
subtype_rel_product, 
int_seg_subtype_nat, 
value-type_wf, 
valueall-type_wf, 
evalall-reduce, 
list-valueall-type, 
value-type-has-value, 
list-value-type, 
equal_functionality_wrt_subtype_rel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lambdaFormation, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
functionExtensionality, 
cumulativity, 
because_Cache, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
promote_hyp, 
unionElimination, 
independent_pairFormation, 
addEquality, 
minusEquality, 
voidEquality, 
intEquality, 
unionEquality, 
productEquality, 
dependent_set_memberEquality, 
imageElimination, 
multiplyEquality, 
functionEquality, 
inlEquality, 
independent_pairEquality, 
universeEquality, 
callbyvalueReduce
Latex:
\mforall{}[A,B:Type].
    (\mforall{}[C:Type].  \mforall{}[f:A  {}\mrightarrow{}  (C?)].  \mforall{}[g:(\mBbbN{}  \mtimes{}  C)  {}\mrightarrow{}  (A  List)  {}\mrightarrow{}  (A  List)].
          \mforall{}[h:(\mBbbN{}  \mtimes{}  C)  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[as:A  List].  \mforall{}[b:B].    (repeat-on-success(f;g;h;as;b)  \mmember{}  A  List  \mtimes{}  B) 
          supposing  \mexists{}m:(A  List)  {}\mrightarrow{}  \mBbbN{}
                                \mforall{}as:A  List.  \mforall{}c:C.  \mforall{}j:\mBbbN{}.
                                    ((first-success(f;as)  =  (inl  <j,  c>))  {}\mRightarrow{}  m  (g  <j,  c>  as)  <  m  as))  supposing 
          (value-type(B)  and 
          valueall-type(A))
Date html generated:
2017_04_14-AM-08_39_46
Last ObjectModification:
2017_02_27-PM-03_30_28
Theory : list_0
Home
Index