Nuprl Lemma : map-tuple_wf

[n:ℕ]. ∀[A,B:Type List].
  ∀[f:⋂i:ℕn. (A[i] ⟶ B[i])]. ∀[t:tuple-type(A)].  (map-tuple(n;f;t) ∈ tuple-type(B)) 
  supposing (||A|| n ∈ ℤ) ∧ (||B|| n ∈ ℤ)


Proof




Definitions occuring in Statement :  map-tuple: map-tuple(len;f;t) tuple-type: tuple-type(L) select: L[n] length: ||as|| list: List int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T isect: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top prop: or: P ∨ Q map-tuple: map-tuple(len;f;t) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt cons: [a b] le: A ≤ B bool: 𝔹 unit: Unit uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q int_seg: {i..j-} lelt: i ≤ j < k subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] true: True less_than': less_than'(a;b) decidable: Dec(P) pi1: fst(t) pi2: snd(t) squash: T cand: c∧ B
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list-cases tupletype_nil_lemma stuck-spread istype-base length_of_nil_lemma product_subtype_list length_of_cons_lemma non_neg_length intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma tupletype_cons_lemma null_wf eqtt_to_assert assert_of_null eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal-wf-T-base list_wf tuple-type_wf int_seg_wf int_seg_properties length_wf_nat set_subtype_base le_wf int_subtype_base subtract-1-ge-0 eq_int_wf assert_of_eq_int neg_assert_of_eq_int null_nil_lemma btrue_wf null_cons_lemma bfalse_wf btrue_neq_bfalse iff_imp_equal_bool true_wf istype-false le_weakening2 nil_wf decidable__le intformnot_wf int_formula_prop_not_lemma decidable__equal_int add-is-int-iff itermSubtract_wf int_term_value_subtract_lemma false_wf subtract_wf add-member-int_seg2 equal_wf squash_wf istype-universe select_cons_tl cons_wf decidable__lt length_wf subtype_rel_self iff_weakening_equal subtype_rel_dep_function select_wf add-subtract-cancel subtype_rel-equal add-associates add-swap add-commutes zero-add nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  universeEquality instantiate unionElimination baseClosed promote_hyp hypothesis_subsumption equalityElimination because_Cache Error :equalityIsType1,  cumulativity Error :equalityIsType3,  Error :isectIsType,  Error :equalityIsType4,  applyEquality intEquality Error :equalityIsType2,  baseApply closedConclusion Error :dependent_set_memberEquality_alt,  Error :productIsType,  applyLambdaEquality pointwiseFunctionality imageElimination functionEquality addEquality imageMemberEquality minusEquality independent_pairEquality Error :functionIsType

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[A,B:Type  List].
    \mforall{}[f:\mcap{}i:\mBbbN{}n.  (A[i]  {}\mrightarrow{}  B[i])].  \mforall{}[t:tuple-type(A)].    (map-tuple(n;f;t)  \mmember{}  tuple-type(B)) 
    supposing  (||A||  =  n)  \mwedge{}  (||B||  =  n)



Date html generated: 2019_06_20-PM-02_03_18
Last ObjectModification: 2018_10_08-PM-06_21_19

Theory : tuples


Home Index