Nuprl Lemma : compatible-half-cubes

k:ℕ. ∀a,b,c,d:ℚCube(k).  ((↑is-half-cube(k;c;a))  (↑is-half-cube(k;d;b))  Compatible(a;b)  Compatible(c;d))


Proof




Definitions occuring in Statement :  compatible-rat-cubes: Compatible(c;d) is-half-cube: is-half-cube(k;h;c) rational-cube: Cube(k) nat: assert: b all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q compatible-rat-cubes: Compatible(c;d) uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a rat-cube-intersection: c ⋂ d prop: nat: rational-cube: Cube(k) iff: ⇐⇒ Q rev_uimplies: rev_uimplies(P;Q) rat-cube-face: c ≤ d cand: c∧ B guard: {T} rational-interval: Interval rat-interval-intersection: I ⋂ J inhabited-rat-interval: Inhabited(I) rat-interval-face: I ≤ J is-half-interval: is-half-interval(I;J) or: P ∨ Q rat-point-interval: [a] pi1: fst(t) pi2: snd(t) rev_implies:  Q squash: T true: True subtype_rel: A ⊆B qge: a ≥ b sq_type: SQType(T) bfalse: ff band: p ∧b q ifthenelse: if then else fi 
Lemmas referenced :  assert-inhabited-rat-cube rat-cube-intersection_wf istype-assert inhabited-rat-cube_wf compatible-rat-cubes_wf int_seg_wf is-half-interval_wf iff_weakening_uiff assert_wf is-half-cube_wf assert-is-half-cube rational-cube_wf istype-nat inhabited-intersection-half-cubes qle_wf qavg_wf qle-qavg-iff-1 equal_wf squash_wf true_wf istype-universe rationals_wf subtype_rel_self iff_weakening_equal rational-interval_wf qmax_wf qmin_wf rat-point-interval_wf qavg-qle-iff-1 qmin_ub qmax_lb qmin-eq-iff qmax-eq-iff qle_antisymmetry qle-qavg-iff-2 qavg-eq-iff-1 qavg-eq-iff-2 qle-qavg-iff-4 qle-qavg-iff-6 qle-qavg-iff-5 qavg-eq-iff-3 qavg-eq-iff-4 implies_weakening_uimplies qle_functionality_wrt_implies qle_weakening_eq_qorder qle-qavg-iff-3 member_wf qavg-same rev_implies_wf qavg-qle-iff-2 qavg-eq-iff-7 qavg-eq-iff-5 qavg-eq-iff-6 qavg-eq-iff-8 bor_wf qeq_wf2 bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert band_wf btrue_wf assert-qeq bfalse_wf q_le_wf iff_transitivity assert_of_bor assert_of_band assert-q_le-eq qmax-eq-iff-2 qmin-eq-iff-2 qmax-eq-iff-1 qmin-eq-iff-1 qle_connex
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution introduction extract_by_obid isectElimination thin because_Cache hypothesisEquality hypothesis productElimination independent_isectElimination sqequalRule universeIsType functionIsType natural_numberEquality setElimination rename applyEquality independent_functionElimination functionEquality dependent_functionElimination independent_pairFormation inhabitedIsType equalityIstype equalityTransitivity equalitySymmetry unionElimination hyp_replacement applyLambdaEquality promote_hyp dependent_set_memberEquality_alt productIsType independent_pairEquality lambdaEquality_alt imageElimination instantiate universeEquality imageMemberEquality baseClosed productEquality unionEquality unionIsType inlFormation_alt inrFormation_alt cumulativity isect_memberEquality_alt

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbQ{}Cube(k).
    ((\muparrow{}is-half-cube(k;c;a))  {}\mRightarrow{}  (\muparrow{}is-half-cube(k;d;b))  {}\mRightarrow{}  Compatible(a;b)  {}\mRightarrow{}  Compatible(c;d))



Date html generated: 2020_05_20-AM-09_20_37
Last ObjectModification: 2020_01_04-PM-10_55_23

Theory : rationals


Home Index