Nuprl Lemma : partition-refinement-sum
∀I:Interval
  (icompact(I)
  ⇒ (∀f:I ⟶ℝ. ∀mc:f[x] continuous for x ∈ I. ∀q:partition(I). ∀n:ℕ+.
        ((partition-mesh(I;q) ≤ (mc 1 n))
        ⇒ frs-increasing(q)
        ⇒ (∀p:partition(I). ∀x:partition-choice(full-partition(I;p)). ∀y:partition-choice(full-partition(I;q)).
              (p refines q
              ⇒ (|partition-sum(f;y;full-partition(I;q)) - partition-sum(f;x;full-partition(I;p))| ≤ ((r1/r(n))
                 * |I|)))))))
Proof
Definitions occuring in Statement : 
continuous: f[x] continuous for x ∈ I, 
partition-refines: P refines Q, 
partition-sum: partition-sum(f;x;p), 
partition-choice: partition-choice(p), 
partition-mesh: partition-mesh(I;p), 
full-partition: full-partition(I;p), 
partition: partition(I), 
frs-increasing: frs-increasing(p), 
icompact: icompact(I), 
rfun: I ⟶ℝ, 
i-length: |I|, 
interval: Interval, 
rdiv: (x/y), 
rleq: x ≤ y, 
rabs: |x|, 
rsub: x - y, 
rmul: a * b, 
int-to-real: r(n), 
nat_plus: ℕ+, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
continuous: f[x] continuous for x ∈ I, 
squash: ↓T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rfun: I ⟶ℝ, 
nat_plus: ℕ+, 
rneq: x ≠ y, 
or: P ∨ Q, 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
cand: A c∧ B, 
label: ...$L... t, 
nat: ℕ, 
ge: i ≥ j , 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
partition: partition(I), 
less_than: a < b, 
less_than': less_than'(a;b), 
subinterval: I ⊆ J , 
icompact: icompact(I), 
cons: [a / b], 
full-partition: full-partition(I;p), 
partition-choice: partition-choice(p), 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
subtract: n - m, 
select: L[n], 
rbetween: x≤y≤z, 
sq_stable: SqStable(P), 
partition-sum: partition-sum(f;x;p), 
sq_type: SQType(T), 
i-length: |I|, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
pointwise-req: x[k] = y[k] for k ∈ [n,m], 
frs-non-dec: frs-non-dec(L), 
rsub: x - y, 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m], 
int_upper: {i...}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
l_all: (∀x∈L.P[x]), 
frs-increasing: frs-increasing(p), 
nil: [], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
left-endpoint: left-endpoint(I), 
endpoints: endpoints(I), 
rccint: [l, u], 
outl: outl(x), 
pi1: fst(t), 
right-endpoint: right-endpoint(I), 
pi2: snd(t)
Lemmas referenced : 
rmul-distrib, 
radd_functionality_wrt_rleq, 
r-triangle-inequality, 
rminus-as-rmul, 
rminus-radd, 
radd-assoc, 
subtype_rel-equal, 
req_transitivity, 
partition-sum_functionality, 
select-cons-hd, 
rsum-shift, 
rsum-split, 
req_wf, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
minus-one-mul-top, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-lt-2, 
cons_neq_nil, 
equal-wf-base, 
rsum-split-shift, 
int_seg_cases, 
subtype_rel_self, 
left_endpoint_rccint_lemma, 
list_ind_cons_lemma, 
subtype_rel_dep_function, 
partition-choice-subtype, 
is-partition-choice_wf, 
int_seg_subtype_nat, 
right_endpoint_rccint_lemma, 
select0, 
partition-refines-cons, 
base_wf, 
stuck-spread, 
le_weakening2, 
sq_stable__less_than, 
add-subtract-cancel, 
list_wf, 
and_wf, 
zero-add, 
add-commutes, 
add-swap, 
add-associates, 
add-member-int_seg2, 
rcc-subinterval, 
rccint-icompact, 
icompact-endpoints, 
partition-point-member, 
partition-split-cons-mesh, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
select-append, 
select-cons-tl, 
rsum-telescopes, 
length-nil, 
length-singleton, 
add_functionality_wrt_eq, 
add_nat_plus, 
length-append, 
top_wf, 
subtype_rel_list, 
length_append, 
length_cons, 
non_neg_length, 
length_nil, 
cons_wf, 
append_wf, 
add_nat_wf, 
rsum_linearity2, 
rleq_weakening, 
rleq_transitivity, 
rmul_functionality_wrt_rleq2, 
zero-rleq-rabs, 
i-member-diff-bound, 
partition-mesh-nil, 
sq_stable__i-member, 
rccint_wf, 
rsum_functionality_wrt_rleq, 
radd-zero-both, 
radd-rminus-both, 
radd_functionality, 
radd-ac, 
radd_comm, 
uiff_transitivity, 
rminus_wf, 
radd_wf, 
radd-preserves-rleq, 
full-partition-non-dec, 
rmul_functionality, 
rabs-rmul, 
rmul-rsub-distrib, 
rabs-of-nonneg, 
equal_wf, 
set_wf, 
rsum_functionality, 
rleq_weakening_equal, 
rabs-rsum, 
rleq_functionality_wrt_implies, 
rsum_linearity-rsub, 
partition-choice-member, 
req_inversion, 
subtract-is-int-iff, 
add-is-int-iff, 
select_wf, 
constant-partition-sum, 
rsub_functionality, 
rabs_functionality, 
rleq_functionality, 
rsum_wf, 
rsum-single, 
req_functionality, 
req_weakening, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
member_wf, 
partitions_wf, 
nil_wf, 
sq_stable__rleq, 
right-endpoint_wf, 
left-endpoint_wf, 
i-member-compact, 
length_of_nil_lemma, 
member_rccint_lemma, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
product_subtype_list, 
list-cases, 
length_wf_nat, 
nat_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
lelt_wf, 
false_wf, 
int_seg_subtype, 
decidable__equal_int, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
decidable__le, 
rfun_subtype, 
int_seg_wf, 
subinterval_wf, 
length_wf, 
le_wf, 
partition-mesh_wf, 
frs-increasing_wf, 
partition_wf, 
full-partition_wf, 
partition-choice_wf, 
partition-refines_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
partition-sum_wf, 
i-length_wf, 
int_seg_properties, 
rmul_wf, 
less_than'_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
nat_properties, 
interval_wf, 
rfun_wf, 
continuous_wf, 
nat_plus_wf, 
subtype_rel_sets, 
rless_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
real_wf, 
rsub_wf, 
rabs_wf, 
rleq_wf, 
i-member_wf, 
sq_exists_wf, 
all_wf, 
i-approx_wf, 
iff_weakening_equal, 
i-approx-of-compact, 
true_wf, 
squash_wf, 
icompact_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
applyEquality, 
hypothesisEquality, 
dependent_set_memberEquality, 
thin, 
lambdaEquality, 
imageElimination, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
productEquality, 
functionEquality, 
universeEquality, 
setElimination, 
rename, 
inrFormation, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
setEquality, 
introduction, 
intWeakElimination, 
independent_pairEquality, 
minusEquality, 
axiomEquality, 
hypothesis_subsumption, 
addEquality, 
promote_hyp, 
equalityElimination, 
substitution, 
instantiate, 
equalityEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
inlFormation, 
cumulativity
Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  I.  \mforall{}q:partition(I).  \mforall{}n:\mBbbN{}\msupplus{}.
                ((partition-mesh(I;q)  \mleq{}  (mc  1  n))
                {}\mRightarrow{}  frs-increasing(q)
                {}\mRightarrow{}  (\mforall{}p:partition(I).  \mforall{}x:partition-choice(full-partition(I;p)).
                        \mforall{}y:partition-choice(full-partition(I;q)).
                            (p  refines  q
                            {}\mRightarrow{}  (|partition-sum(f;y;full-partition(I;q))  
                                  -  partition-sum(f;x;full-partition(I;p))|  \mleq{}  ((r1/r(n))  *  |I|)))))))
 Date html generated: 
2016_05_18-AM-10_38_53
 Last ObjectModification: 
2016_01_17-AM-00_58_14
Theory : reals
Home
Index