Nuprl Lemma : oal_merge_sd_ordered

a:LOSet. ∀b:AbDMon. ∀ps,qs:(|a| × |b|) List.
  ((↑sd_ordered(map(λx.(fst(x));ps)))  (↑sd_ordered(map(λx.(fst(x));qs)))  (↑sd_ordered(map(λx.(fst(x));ps ++ qs))))


Proof




Definitions occuring in Statement :  oal_merge: ps ++ qs sd_ordered: sd_ordered(as) map: map(f;as) list: List assert: b pi1: fst(t) all: x:A. B[x] implies:  Q lambda: λx.A[x] product: x:A × B[x] abdmonoid: AbDMon grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet abdmonoid: AbDMon dmon: DMon mon: Mon so_lambda: λ2y.t[x; y] prop: implies:  Q so_apply: x[s1;s2] guard: {T} or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt true: True cons: [a b] uimplies: supposing a sq_type: SQType(T) uiff: uiff(P;Q) and: P ∧ Q bfalse: ff band: p ∧b q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 grp_car: |g| pi1: fst(t) band_mon: <𝔹,∧b> rev_uimplies: rev_uimplies(P;Q) grp_op: * pi2: snd(t) infix_ap: y unit: Unit it: iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False cand: c∧ B ball: ball decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  list_pr_length_ind set_car_wf grp_car_wf assert_wf sd_ordered_wf map_wf pi1_wf_top oal_merge_wf list_wf abdmonoid_wf loset_wf list-cases length_of_nil_lemma map_nil_lemma oal_merge_left_nil_lemma sd_ordered_nil_lemma istype-true istype-less_than length_wf istype-assert product_subtype_list length_of_cons_lemma map_cons_lemma oal_merge_right_nil_lemma sd_ordered_cons_lemma before_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert band_wf btrue_wf bfalse_wf cons_wf assert_functionality_wrt_uiff mon_htfor_wf band_mon_wf iabmonoid_subtype_imon abmonoid_subtype_iabmonoid subtype_rel_transitivity abmonoid_wf iabmonoid_wf imon_wf ball_wf set_blt_wf subtype_rel_self mon_subtype_grp_sig abmonoid_subtype_mon mon_wf grp_sig_wf sd_ordered_char mon_htfor_cons_lemma assert_of_band oal_merge_conses_lemma uiff_transitivity equal-wf-T-base set_lt_wf assert_of_set_lt iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot istype-void grp_eq_wf grp_op_wf grp_id_wf equal_wf assert_of_mon_eq oal_merge_dom_pred ball_cons_lemma decidable__lt full-omega-unsat intformnot_wf intformless_wf itermAdd_wf itermVar_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf assert_functionality_wrt_bimplies ball_functionality_wrt_bimplies set_blt_functionality_wrt_set_lt_r set_lt_complement set_leq_antisymmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin productEquality isectElimination setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality_alt functionEquality because_Cache productElimination independent_pairEquality Error :memTop,  productIsType universeIsType inhabitedIsType independent_functionElimination unionElimination natural_numberEquality functionIsType addEquality promote_hyp hypothesis_subsumption instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry applyEquality isect_memberEquality_alt equalityElimination baseClosed independent_pairFormation voidElimination equalityIstype approximateComputation dependent_pairFormation_alt int_eqEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps,qs:(|a|  \mtimes{}  |b|)  List.
    ((\muparrow{}sd\_ordered(map(\mlambda{}x.(fst(x));ps)))
    {}\mRightarrow{}  (\muparrow{}sd\_ordered(map(\mlambda{}x.(fst(x));qs)))
    {}\mRightarrow{}  (\muparrow{}sd\_ordered(map(\mlambda{}x.(fst(x));ps  ++  qs))))



Date html generated: 2020_05_20-AM-09_35_53
Last ObjectModification: 2020_01_08-PM-06_17_02

Theory : polynom_2


Home Index