Nuprl Lemma : oal_merge_sd_ordered
∀a:LOSet. ∀b:AbDMon. ∀ps,qs:(|a| × |b|) List.
((↑sd_ordered(map(λx.(fst(x));ps)))
⇒ (↑sd_ordered(map(λx.(fst(x));qs)))
⇒ (↑sd_ordered(map(λx.(fst(x));ps ++ qs))))
Proof
Definitions occuring in Statement :
oal_merge: ps ++ qs
,
sd_ordered: sd_ordered(as)
,
map: map(f;as)
,
list: T List
,
assert: ↑b
,
pi1: fst(t)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
lambda: λx.A[x]
,
product: x:A × B[x]
,
abdmonoid: AbDMon
,
grp_car: |g|
,
loset: LOSet
,
set_car: |p|
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
loset: LOSet
,
poset: POSet{i}
,
qoset: QOSet
,
dset: DSet
,
abdmonoid: AbDMon
,
dmon: DMon
,
mon: Mon
,
so_lambda: λ2x y.t[x; y]
,
prop: ℙ
,
implies: P
⇒ Q
,
so_apply: x[s1;s2]
,
guard: {T}
,
or: P ∨ Q
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
true: True
,
cons: [a / b]
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
bfalse: ff
,
band: p ∧b q
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
bool: 𝔹
,
grp_car: |g|
,
pi1: fst(t)
,
band_mon: <𝔹,∧b>
,
rev_uimplies: rev_uimplies(P;Q)
,
grp_op: *
,
pi2: snd(t)
,
infix_ap: x f y
,
unit: Unit
,
it: ⋅
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
false: False
,
cand: A c∧ B
,
ball: ball,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
Lemmas referenced :
list_pr_length_ind,
set_car_wf,
grp_car_wf,
assert_wf,
sd_ordered_wf,
map_wf,
pi1_wf_top,
oal_merge_wf,
list_wf,
abdmonoid_wf,
loset_wf,
list-cases,
length_of_nil_lemma,
map_nil_lemma,
oal_merge_left_nil_lemma,
sd_ordered_nil_lemma,
istype-true,
istype-less_than,
length_wf,
istype-assert,
product_subtype_list,
length_of_cons_lemma,
map_cons_lemma,
oal_merge_right_nil_lemma,
sd_ordered_cons_lemma,
before_wf,
bool_cases,
subtype_base_sq,
bool_wf,
bool_subtype_base,
eqtt_to_assert,
band_wf,
btrue_wf,
bfalse_wf,
cons_wf,
assert_functionality_wrt_uiff,
mon_htfor_wf,
band_mon_wf,
iabmonoid_subtype_imon,
abmonoid_subtype_iabmonoid,
subtype_rel_transitivity,
abmonoid_wf,
iabmonoid_wf,
imon_wf,
ball_wf,
set_blt_wf,
subtype_rel_self,
mon_subtype_grp_sig,
abmonoid_subtype_mon,
mon_wf,
grp_sig_wf,
sd_ordered_char,
mon_htfor_cons_lemma,
assert_of_band,
oal_merge_conses_lemma,
uiff_transitivity,
equal-wf-T-base,
set_lt_wf,
assert_of_set_lt,
iff_transitivity,
bnot_wf,
not_wf,
iff_weakening_uiff,
eqff_to_assert,
assert_of_bnot,
istype-void,
grp_eq_wf,
grp_op_wf,
grp_id_wf,
equal_wf,
assert_of_mon_eq,
oal_merge_dom_pred,
ball_cons_lemma,
decidable__lt,
full-omega-unsat,
intformnot_wf,
intformless_wf,
itermAdd_wf,
itermVar_wf,
itermConstant_wf,
istype-int,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
assert_functionality_wrt_bimplies,
ball_functionality_wrt_bimplies,
set_blt_functionality_wrt_set_lt_r,
set_lt_complement,
set_leq_antisymmetry
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
productEquality,
isectElimination,
setElimination,
rename,
hypothesisEquality,
hypothesis,
sqequalRule,
lambdaEquality_alt,
functionEquality,
because_Cache,
productElimination,
independent_pairEquality,
Error :memTop,
productIsType,
universeIsType,
inhabitedIsType,
independent_functionElimination,
unionElimination,
natural_numberEquality,
functionIsType,
addEquality,
promote_hyp,
hypothesis_subsumption,
instantiate,
cumulativity,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
applyEquality,
isect_memberEquality_alt,
equalityElimination,
baseClosed,
independent_pairFormation,
voidElimination,
equalityIstype,
approximateComputation,
dependent_pairFormation_alt,
int_eqEquality,
hyp_replacement,
applyLambdaEquality
Latex:
\mforall{}a:LOSet. \mforall{}b:AbDMon. \mforall{}ps,qs:(|a| \mtimes{} |b|) List.
((\muparrow{}sd\_ordered(map(\mlambda{}x.(fst(x));ps)))
{}\mRightarrow{} (\muparrow{}sd\_ordered(map(\mlambda{}x.(fst(x));qs)))
{}\mRightarrow{} (\muparrow{}sd\_ordered(map(\mlambda{}x.(fst(x));ps ++ qs))))
Date html generated:
2020_05_20-AM-09_35_53
Last ObjectModification:
2020_01_08-PM-06_17_02
Theory : polynom_2
Home
Index